Александр Китайгородский - Физика для всех. Книга 3. Электроны

Тут можно читать онлайн Александр Китайгородский - Физика для всех. Книга 3. Электроны - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Наука, год 1979. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Китайгородский - Физика для всех. Книга 3. Электроны краткое содержание

Физика для всех. Книга 3. Электроны - описание и краткое содержание, автор Александр Китайгородский, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех».
В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул.
В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества.
Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.

Физика для всех. Книга 3. Электроны - читать онлайн бесплатно полную версию (весь текст целиком)

Физика для всех. Книга 3. Электроны - читать книгу онлайн бесплатно, автор Александр Китайгородский
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Некоторые «пустые клеточки» были заполнены еще при жизни Менделеева. Это принесло ему мировую славу, ибо всем стало ясно, что составление этой таблицы — не просто формальный акт, а открытие великого закона природы.

Смысл порядкового номера, который приписывает таблица химическому элементу, стал очевидным лишь после того, как у физиков не осталось сомнений в справедливости планетарной модели атома Резерфорда и законов квантования энергии. Каков же этот смысл? Ответ оказывается на редкость простым: порядковый номер равен числу электронов, вращающихся около ядра. Можно сказать и так: порядковый номер элемента — это положительный заряд его ядра, выраженный в единицах заряда электрона.

Периодический закон Менделеева, принцип квантования энергии и изучение характеристических оптических и рентгеновских спектров атомов (о них мы расскажем попозже) позволили попять причину тождественного химического поведения атомов, стоящих в одном столбце таблицы Менделеева.

Энергия атома есть энергия взаимодействия электронов с ядром. Поскольку энергия квантуется, то логично было бы допустить, что электроны каждого атома можно расположить в ряд по энергиям. Первый электрон связан с ядром наиболее сильно, второй слабее, третий еще слабее и т. д., так что электроны атома расположены по энергетическим ступенькам. Логика нас не подводит, но опыт приводит к уточнению этой картины. Во-первых, оказывается, что каждую энергетическую ступеньку может занимать не один, а два электрона. Правда, эти электроны не одинаковы, а отличаются друг от друга свойством, которое называется «спином». Свойство это векторное. Так что любители наглядности могут представить себе, что на заполненной ступеньке находятся две «точечки», снабженные стрелками, — одна стрелка смотрит «вниз», а другая «вверх».

Само слово «спин» возникло следующим образом. Это английское слово, которое в переводе на русский язык означает «быстро вращаться». Чтобы представить себе, чем отличаются два электрона, сидящие на одной ступеньке, предлагалось думать, что один электрон вращается по, а другой — против часовой стрелки около своей собственной оси. Эта модель была подсказана поверхностным сходством атома и планетной системы. Раз электрон — нечто вроде планеты, то почему-бы не разрешить ему вращаться около своей оси. Я должен очередной раз огорчить читателя: наглядно представить себе спин электрона — задача невозможная. А вот как его измерить, мы скажем в следующей главе.

Но это не единственное важное заключение (к которому нас привело внимательное изучение спектров атомов). Второе заключение состояло в том, что ступеньки энергии отстоят друг от друга на неравные расстояния и могут быть разбиты на группы.

За первой ступенькой, которую называют К -уровнем, следует энергетический разрыв и за ним группа из 8 электронов, обозначаемая буквой L , затем группа из 18 электронов, обозначаемая буквой М … Не будем описывать расположение уровней и порядок их заполнения для всех атомов. Картина оказывается не столь уж простой и описание ее потребовало бы много места. Детали в нашей маленькой книжке роли не играют, и про ступеньки я упомянул лишь для того, чтобы пояснить, в чем же сходство атомов, которые находятся друг под другом в таблице Менделеева. Оказывается, у них одинаковое число электронов на верхней группе ступенек.

Становится ясным химическое понятие валентности атома. Так, у лития, натрия, калия, рубидия, цезия и франция по одному электрону на верхней группе ступенек. У бериллия, магния, кальция и т. д. — по два электрона. Валентные электроны слабее всего связаны с атомом. Поэтому при ионизации атомов, стоящих в первом столбце, образуются легче всего однозарядные частицы. Ионы бериллия, магния и пр. несут на себе два заряда, и т. д.

ЭЛЕКТРИЧЕСКОЕ СТРОЕНИЕ МОЛЕКУЛ

Химики называют молекулой мельчайшего представителя вещества. Физики большей частью пользуются этим словом лишь в том случае, если этот мельчайший представитель реально существует как отдельное маленькое тело.

Существует ли молекула поваренной соли? Конечно, ответит химик, и напишет формулу: NaCl. Поваренная соль — это хлористый натрий. Молекула состоит из одного атома натрия и одного атома хлора. Однако этот ответ лишь формально справедлив. На самом же деле ни в кристаллике поваренной соли, ни в растворе соли в воде, ни в парах хлористого натрия мы не обнаруживаем пары атомов, которая вела бы себя как одно целое. Как мы говорили во второй книге, в кристаллике каждый атом натрия окружен шестью хлорными соседями. Все эти соседи равноправны, и никак нельзя сказать, какой из них «принадлежит» данному атому натрия.

Растворим поваренную соль в воде. Окажется, что раствор — превосходный проводник тока. Строгими опытами, о которых мы уже говорили, можно доказать, что электрический ток представляет собой поток отрицательно заряженных атомов хлора, движущихся в одну сторону, и поток положительно заряженных атомов натрия, движущихся в противоположную сторону. Так что при растворении атомы хлора и натрия также не образуют крепко связанную пару атомов.

После того как модель атома установлена, становится ясным, что анион хлора представляет собой атом хлора с «лишним» электроном, — напротив, катиону натрия «не достает» одного электрона.

Можно ли сделать отсюда вывод, что и твердое тело построено не из атомов, а из ионов? Да. Это доказывается многими опытами, на описании которых мы не станем останавливаться.

Ну, а пары хлористого натрия? И в парáх мы не находим молекул. Пар хлористого натрия состоит из ионов или из различных очень неустойчивых групп ионов. О молекулах ионных соединений можно говорить лишь в химическом смысле этого слова.

Ионные соединения обязательно растворяются в воде. Такие растворы, классическим примером которых являются простые соли металлов вроде хлористого натрия, обладают хорошей проводимостью и поэтому называются сильными электролитами.

Приведем теперь несколько примеров веществ, которые построены из настоящих молекул — из молекул в физическом смысле этого слова. Это кислород, азот, углекислый газ, углеводороды, углеводы, стероиды, витамины… список можно было бы продолжать весьма долго.

Всякие классификации всегда несколько условны. Поэтому я должен предупредить читателя, что иногда мы сталкиваемся и с такими случаями, когда в одном агрегатном состоянии вещество состоит из физических молекул, а в других — нет. К таким веществам относится такое важное, как вода. Молекулы водяного пара несомненно отдельные тельца. А вот в кристаллах льда «оконтурить» одну молекулу и сказать, что вот этот атом водорода связан только с вот тем атомом кислорода, уже трудновато.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Китайгородский читать все книги автора по порядку

Александр Китайгородский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика для всех. Книга 3. Электроны отзывы


Отзывы читателей о книге Физика для всех. Книга 3. Электроны, автор: Александр Китайгородский. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x