Александр Китайгородский - Физика для всех. Книга 3. Электроны

Тут можно читать онлайн Александр Китайгородский - Физика для всех. Книга 3. Электроны - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Наука, год 1979. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Китайгородский - Физика для всех. Книга 3. Электроны краткое содержание

Физика для всех. Книга 3. Электроны - описание и краткое содержание, автор Александр Китайгородский, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех».
В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул.
В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества.
Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.

Физика для всех. Книга 3. Электроны - читать онлайн бесплатно полную версию (весь текст целиком)

Физика для всех. Книга 3. Электроны - читать книгу онлайн бесплатно, автор Александр Китайгородский
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Механизм поляризации, который мы описали, называется процессом создания мягких диполей. Если поля нет, то нет и диполей. Чем больше поле, тем больше смещение центра тяжести электронов, тем больше «наведенный» дипольный момент, тем больше поляризация.

Образование мягких диполей от температуры зависеть не может. Опыт показывает, что есть диэлектрики, на которые температура не влияет. Значит для них описанный механизм справедлив.

Ну, а что же придумать для тех случаев, когда имеется явная зависимость диэлектрической проницаемости от температуры? Внимательные исследования связи структуры молекулы с поведением вещества в электрическом поле, а также характер температурной зависимости ε (всегда поляризация падает с ростом температуры) приводят нас к следующей мысли. Если молекулы и в отсутствие поля обладают дипольным моментом («жесткие» диполи) и могут менять свою ориентацию, то это объяснит температурную зависимость диэлектрической проницаемости.

Действительно, в отсутствие поля молекулы расположены «как попало». Дипольные моменты складываются геометрически. Поэтому для объема, содержащего много молекул, результирующий момент будет равен пулю. Электрическое поле «причесывает» молекулы, заставляет их смотреть преимущественно в одну сторону. В противоборство вступают две силы: тепловое движение, которое вносит беспорядок в расположение молекул, и упорядочивающее действие поля. Понятно, что чем выше температура, тем труднее полю «справиться» с молекулами. Отсюда и следует, что диэлектрическая проницаемость у таких веществ должна падать с уменьшением, температуры.

Для лучшего запоминания сказанного приводится рис. 2.2. Верхний рисунок показывает, что поляризация атома сводится к смещению и деформации электронных оболочек. Чем дальше расположен электрон от атома, тем больше скажется на нем действие поля. Слои, изображенные на этих схематических рисунках точками, символизируют места пребывания электронов. Надо помнить, что картина имеет весьма условный характер, так как разные электроны имеют в молекулах разные по форме области существования (см. стр. 102).

На среднем рисунке показано поведение симметричной двухатомной молекулы В - фото 7

На среднем рисунке показано поведение симметричной двухатомной молекулы. В отсутствие поля она не обладает моментом. Поле наводит электрический момент. Он может быть разным по величине в зависимости от того, под каким углом молекула расположена по отношению к полю. Момент образуется благодаря деформации электронных оболочек.

Наконец, на нижней схеме показано поведение молекулы, обладающей дипольным моментом и в отсутствие поля. На нашей схеме молекула лишь повернулась. Однако в общем случае у веществ, молекулы которых обладают моментом в отсутствие поля, будут присутствовать оба механизма поляризации: наряду с поворотами молекул могут происходить и смещения электронов. Эти два эффекта нетрудно разделить, производя измерения при очень низких температурах, когда влияние теплового движения практически отсутствует.

Если эта модель справедлива, то мы не должны наблюдать температурную зависимость диэлектрической проницаемости у веществ, молекулы которых симметричны, например таких, как молекула кислорода или хлора. Если же двухатомная молекула состоит из двух разных атомов, как, например, молекула угарного газа СО, то в этом случае зависимость ε от температуры должна иметь место. Так оно и есть на самом деле. К молекулам с очень значительным дипольным моментом относится нитробензол.

Что будет происходить с обычным диэлектриком при увеличении электрического поля Е ? Очевидно, должна увеличиваться поляризация вещества. Это происходит за счет растяжения диполей: в атоме это сдвиг электронного облака относительно ядра, в молекуле это может быть удаление друг от друга двух ионов. Как бы то ни было, естественно задать вопрос, до каких пор электрон, оттянутый полем далеко от ядра, является по-прежнему электроном атома, а два иона, находящиеся уже достаточно далеко друг от друга, образуют по-прежнему молекулу. Предел безусловно существует, и при достаточной напряженности Е происходит так называемый пробой диэлектрика. Порядок этой напряженности — несколько тысяч киловольт на метр. В любом случае, пробой связан с высвобождением электронов или ионов, т. е. созданием свободных носителей тока. Диэлектрик перестает быть диэлектриком, по нему течет электрический ток.

С явлением пробоя чаще всего приходится сталкиваться, когда выходит из строя конденсатор в телевизоре или радиоприемнике. Однако мы знаем и другие примеры пробоя — электрические разряды в газах. Об электрическом разряде в газах мы поговорим особо. А сейчас познакомимся с двумя важными членами семейства диэлектриков — пьезоэлектриками и сегнетоэлектриками.

Главным представителем класса пьезоэлектриков является кварц. Члены этого класса (к нему принадлежат, кроме кварца, к примеру, сахар и турмалин) должны обладать определенной симметрией. На рис. 2.3 изображен кристалл кварца. Главная ось этого кристалла — ось симметрии 3-го порядка. В перпендикулярной плоскости лежат три оси 2-го порядка.

Указанным на рисунке способом из кристалла вырезают пластинку толщиной около 2 - фото 8

Указанным на рисунке способом из кристалла вырезают пластинку толщиной около 2 см. Мы видим, что она перпендикулярна главной оси, а оси 2-го порядка лежат в ее плоскости. Затем из этой толстой пластинки перпендикулярно одной из осей 2-го порядка вырезают тонкую пластинку толщиной около 0,5 мм. С полученной таким образом тонкой пьезоэлектрической пластинкой (на рисунке справа она сдвинута вниз) можно произвести интересные опыты.

Сдавим пластинку вдоль направления А , перпендикулярного осям симметрии, а к боковым плоскостям пластинки присоединим электрометр — прибор, обнаруживающий электрический заряд (для того чтобы был электрический контакт, эти плоскости надо посеребрить). Оказывается/ что под действием, сжатия на гранях пластинки появляются разноименные заряды. Если вместо сжатия применяется растяжение, то заряды меняют знаки: там, где при сжатии возникал положительный заряд, при растяжении возникает отрицательный, и наоборот. Вот это явление — возникновение электрических зарядов под действием давления или растяжения — получило название пьезоэлектричества.

Пьезокварцевые устройства чрезвычайно чутки: электрические приборы позволяют измерять заряды, появляющиеся на кварце при самой ничтожной силе, которую другими способами мы не можем измерить. Пьезокварц способен также отмечать очень быстрые изменения давления, что недоступно другим измерительным приборам. Поэтому описанное нами явление имеет огромное практическое значение как способ электрической регистрации всякого рода механических действий, в том числе звуков. Достаточно легко дунуть на пьезокварцевую пластинку — и электрический прибор откликнется.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Китайгородский читать все книги автора по порядку

Александр Китайгородский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика для всех. Книга 3. Электроны отзывы


Отзывы читателей о книге Физика для всех. Книга 3. Электроны, автор: Александр Китайгородский. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x