Лоуренс Краусс - Страх физики. Сферический конь в вакууме

Тут можно читать онлайн Лоуренс Краусс - Страх физики. Сферический конь в вакууме - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Питер, год 2016. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Страх физики. Сферический конь в вакууме
  • Автор:
  • Жанр:
  • Издательство:
    Питер
  • Год:
    2016
  • Город:
    СПб.
  • ISBN:
    978-5-496-02066-4
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Лоуренс Краусс - Страх физики. Сферический конь в вакууме краткое содержание

Страх физики. Сферический конь в вакууме - описание и краткое содержание, автор Лоуренс Краусс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.

Страх физики. Сферический конь в вакууме - читать онлайн бесплатно полную версию (весь текст целиком)

Страх физики. Сферический конь в вакууме - читать книгу онлайн бесплатно, автор Лоуренс Краусс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Здесь имеется гораздо более глубокая и, надеюсь, менее семантическая проблема, входящая в число тех вопросов, на которых я хотел бы сосредоточиться в этой главе. Что в принципе означает, что некая теория является истинной. Рассмотрим квантовую электродинамику (КЭД), теорию, завершенную после встречи на Шелтер Айленде. Примерно за двадцать лет до этого молодой Дирак вывел свое релятивистское уравнение. Это уравнение правильно описывало все, что на тот момент было известно об электронах, но при его решении возникала неприятная математическая расходимость, и эта проблема была внесена в повестку дня совещания на Шелтер Айленде. В конечном итоге Фейнман, Швингер и Томонага представили математически согласованный метод решения уравнения Дирака, который позволял получать предсказания, полностью согласующиеся со всеми экспериментами. В течение десятилетий после эпохального совещания все эксперименты демонстрировали блестящее согласие с предсказаниями теории. На сегодняшний день КЭД — это наиболее хорошо подтвержденная из всех физических теорий. Сделанные на ее основе расчеты согласуются с экспериментальными данными до девятого знака после запятой! Мы никогда не имели более точной теории, чем КЭД.

Но можно ли сказать, что КЭД является полной теорией взаимодействия электронов и фотонов? Разумеется, нет. Например, мы знаем, что если рассматривать достаточно высокоэнергетические процессы с участием массивных W и Z бозонов, то КЭД становится частью более общей теории — теории электрослабого взаимодействия. То есть на данном этапе КЭД сама по себе неполна.

Это не досадная случайность. Даже если бы W и Z бозонов не существовало, а электромагнетизм и гравитация были единственными известными нам силами в природе, мы все равно не могли бы назвать КЭД полной теорией электронов и фотонов. Потому что, как стало понятно спустя несколько лет после совещания в Шелтер Айленде, это утверждение без последующего уточнения не имеет физического смысла.

Соединение теории относительности и квантовой механики, первым успешным примером которого является КЭД, демонстрирует, что любая теория, и КЭД в том числе, имеет смысл только в той мере, в какой мы привязываем ее к определенному масштабу. Например, имеет смысл говорить, что КЭД является полной теорией взаимодействия электронов и фотонов на расстояниях, не меньших 10 -10см. На таких расстояниях влияние W и Z бозонов еще не проявляется. Это может показаться мелкой придиркой, но поверьте мне, это не так.

В главе 1 я писал про необходимость согласования размерностей и масштабов с физическими измерениями. Осознание необходимости согласовывать физическую теорию с масштабом явления — пространственным, временным или энергетическим — появилось, когда Ханс Бете сделал аппроксимацию, позволившую ему вычислить лэмбовский сдвиг спустя пять дней после совещания на Шелтер Айленде. Бете сумел избавиться от расходимости путем пренебрежения, по физическим соображениям, некоторыми эффектами.

Напомню еще раз, что сделал Бете. Теория относительности и квантовая механика подразумевают, что частицы могут спонтанно «выскакивать» из пустого пространства только затем, чтобы тут же исчезнуть, если они это делают в течение очень короткого промежутка времени, который не может быть измерен в силу принципа неопределенностей. Тем не менее расчет лэмбовского сдвига продемонстрировал, что эти частицы могут влиять на реально измеряемые свойства обычных частиц, например на свойства атома водорода. Проблема, однако, состояла в том, что учет влияния всех возможных виртуальных частиц с произвольно высокими энергиями делал расчет атома водорода математически невыполнимым. Бете утверждал, что следует исключить из расчета те виртуальные частицы, энергия которых превышает некую величину. В то время он понятия не имел, что это должна быть за величина и из каких соображений ее следует выбирать, поэтому он выбрал в качестве предельного значения энергии энергию покоя электрона.

Разработав окончательный вариант теории, Фейнман, Швингер и Томонага показали, что вклад виртуальных частиц высоких энергий действительно можно последовательным образом исключить. И их теория начала давать разумные результаты — как и должна поступать любая разумная теория. В конце концов, если бы вклад всех процессов, происходящих на расстояниях и временах, много меньших масштаба атомных явлений, в окончательный результат был существенным, у нас не осталось бы ни малейшей надежды построить применимую на практике физическую теорию. Это все равно как если бы для описания движения мяча нам понадобилось учесть все силы, действующие на каждую молекулу мяча в течение каждой наносекунды его полета.

Со времен Галилея отбрасывание несущественного было неявным принципом построения любой физической теории. Этот принцип остается справедливым даже при выполнении очень точных расчетов. Вернемся к мячу. Даже вычисляя его положение с точностью до долей миллиметра, мы по-прежнему предполагаем, что его можно рассматривать как мяч, хотя на самом деле он представляет собой набор из примерно 10 24атомов, каждый из которых сложным образом колеблется и вращается относительно других атомов во время полета мяча. Однако фундаментальное свойство законов Ньютона позволяет нам разделить движение составного тела на две части: на движение центра масс, положение которого определяется как усредненное положение всех составляющих его частей, и на движение всех отдельных частей тела относительно центра масс. Обратите внимание, что центр масс не обязательно находится там, где имеется какая-нибудь масса. Например, центр масс бублика находится в середине его дырки! Если мы подбросим бублик, он может кувыркаться довольно сложным образом, но его центр масс будет двигаться по параболе, впервые рассчитанной еще Галилеем.

Таким образом, когда мы исследуем движение мяча или бублика, основываясь на законах Ньютона, мы пользуемся тем, что сегодня принято называть эффективной теорией. Более полная теория должна была бы включать в описание взаимодействие кварков и электронов или, по крайней мере, атомов. Но мы можем объединять все, не вносящее вклада в окончательный результат степени свободы, во что-то, что называем мячом, под которым мы, разумеется, подразумеваем центр масс этого мяча. Описание движения всех макроскопических объектов сводится к эффективной теории движения центра масс. Эффективная теория движения мяча — это все, что нам нужно, и эта теория позволяет сделать так много, что заслуживает права считаться фундаментальной. Итак, я утверждаю, что все физические теории, по крайней мере те, которыми сегодня пользуются физики, являются эффективными теориями. Всякий раз, когда вы что-то включаете в теорию, вы чем-то пренебрегаете.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Лоуренс Краусс читать все книги автора по порядку

Лоуренс Краусс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Страх физики. Сферический конь в вакууме отзывы


Отзывы читателей о книге Страх физики. Сферический конь в вакууме, автор: Лоуренс Краусс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x