Лоуренс Краусс - Страх физики. Сферический конь в вакууме
- Название:Страх физики. Сферический конь в вакууме
- Автор:
- Жанр:
- Издательство:Питер
- Год:2016
- Город:СПб.
- ISBN:978-5-496-02066-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лоуренс Краусс - Страх физики. Сферический конь в вакууме краткое содержание
Страх физики. Сферический конь в вакууме - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Иногда физики упрощают картину мира, руководствуясь своей интуицией, но чаще всего они делают это, потому что у них нет иного выбора. Существует известная аллегория, которую любят повторять физики: «Если вы ночью на плохо освещенной улице обнаружите, что потеряли ключи от автомобиля, где в первую очередь вы станете их искать? Разумеется, под ближайшим фонарем. Почему? Не потому, что вы, возможно, потеряли ключи именно в этом месте, а потому что это единственное место, где имеется хоть какая-то вероятность их найти». В своей научной работе большинство физиков руководствуются именно этим принципом: они ищут там, где светло.
Природа так часто бывает к нам благосклонна, что мы привыкли принимать это как должное. Любую новую проблему мы пытаемся решать при помощи старых проверенных методов не потому, что они годятся для этого, а потому, что на тот момент у нас, как правило, нет других. Если повезет, мы можем надеяться, что даже грубое приближение принесет нам какое-нибудь новое понимание некоторого физического аспекта. Физика полна примеров, когда поиск там, где светло, приносил гораздо больше, чем мы имели право ожидать. Одним из таких примеров может служить событие, произошедшее вскоре после окончания Второй мировой войны, которое стало лишь звеном большой цепи, приведшей к появлению новейшей физики. Окончательным результатом этой цепи событий явилась та картина мира, которую мы сегодня считаем наиболее приемлемой. Я не встречал обсуждения этого вопроса в популярной литературе, несмотря на то что он имеет основополагающее значение для современной физики.
Война закончилась, и физики, освободившись от необходимости работать на военных, наконец вернулись к исследованию основополагающего вопроса, вставшего после завершения двух великих революций XX века, приведших к появлению теории относительности и квантовой механики. Теперь перед ними стояла новая задача: примирить друг с другом обе теории. Более подробно я расскажу о них в следующих главах, пока же остановимся на наиболее важных их аспектах. Квантовая механика имеет дело с явлениями, происходящими на малых масштабах — как пространства, так и времени. И она утверждает, что на этих масштабах существуют пары параметров, которые не могут быть точно измерены одновременно. Например, невозможно в один и тот же момент времени одинаково точно определить скорость и положение частицы, независимо от того, насколько хороша наша измерительная аппаратура. Аналогично, нельзя точно определить энергию частицы, если измерения производятся в течение короткого интервала времени. Теория относительности же предполагает, что измерения координат, скорости, времени и энергии связаны друг с другом фундаментальными соотношениями, особенности которых становятся наиболее очевидными, когда скорость тела приближается к скорости света. Глубоко внутри атомов составляющие их частицы движутся достаточно быстро, чтобы эффекты теории относительности становились существенными, но в то же время масштабы явлений достаточно малы, чтобы тут уже в полную силу работали и законы квантовой механики. Самым замечательным следствием брака этих двух теорий является предсказание, что, когда промежуток времени настолько мал, что невозможно определить, какое количество энергии содержится в определенном объеме, становится невозможно определить, сколько частиц находится внутри этого объема. Рассмотрим, к примеру, движение электрона из электронной пушки к экрану в кинескопе телевизора. Электроны — это микроскопические заряженные частицы, которые, наряду с протонами и нейтронами, составляют все атомы обычного вещества. В металлах электроны, двигаясь под действием электрических сил, создают электрический ток. Если металлическую проволоку нагреть, то содержащиеся в ней электроны начнут отрываться от нее и при наличии электрического поля полетят в сторону экрана. Врезаясь в экран, электроны порождают световые вспышки, которые и формируют изображение. Так вот, законы квантовой механики говорят нам, что для любого очень короткого интервала времени невозможно указать точно, по какой траектории движется электрон, и в то же самое время узнать его скорость. При добавлении в эту картину теории относительности выходит, что в течение этого короткого интервала нельзя утверждать с уверенностью, что существует только один электрон, движущийся в выбранной области пространства. Существует вероятность, что в этот момент времени спонтанно появится другой электрон вместе со своей античастицей — позитроном, имеющим противоположный заряд. Эта пара частиц появляется из пустого пространства и путешествует вместе с нашим электроном в течение короткого промежутка времени, а затем лишние частицы исчезают — аннигилируют друг с другом, снова оставляя наш электрон в одиночестве. Дополнительная энергия, необходимая для рождения электрон-позитронной пары, возникает из ниоткуда и после их аннигиляции снова исчезает в никуда, и все потому, что на очень коротком промежутке времени энергия, согласно законам квантовой механики, не может быть измерена точно.
Трезво поразмыслив над только что описанной ситуацией, вы могли бы прийти к выводу, что все это выглядит как попытка сосчитать количество ангелов на острие иглы. Но между ангелами и виртуальными частицами имеется существенное различие. Электрон-позитронные пары не исчезают совсем бесследно. Подобно улыбке Чеширского кота, которая хоть и не осязаема, но видима, виртуальные электрон-позитронные пары едва уловимо изменяют некоторые свойства электрона, и эти изменения можно измерить.
В 1930 году было признано, что такие явления, включая само существование античастиц, подобных позитрону, являются неизбежным следствием соединения квантовой механики и теории относительности. Нерешенным оставался лишь вопрос, как посчитать вклад всех возможных виртуальных частиц в конечное значение измеряемых физических величин. Проблема состояла в том, что чем на меньших расстояниях мы хотим подсчитать какой-то параметр, тем больше виртуальных частиц нам необходимо включать в расчет. Например, мы рассчитываем движение электрона, и в какой-то момент рядом с ним возникает электрон-позитронная пара. Теперь нам нужно для этого короткого промежутка времени учитывать движение уже трех частиц. Но чем меньше промежуток времени, тем больше неопределенность энергии, значит, рядом с каждой из частиц может возникнуть новая электрон-позитронная пара и так далее. Попытка учесть все возможные виртуальные частицы приводила к бесконечным результатам. Это физиков, разумеется, не устраивало.
Вот в такой ситуации в апреле 1947 года в маленьком отеле на Шелтер Айленде, небольшом островке около восточной оконечности Лонг-Айленда, состоялась встреча группы теоретиков и экспериментаторов, занимавшихся фундаментальными проблемами структуры материи. Среди них были как маститые старики, так и молодые радикалы, многие из которых провели последние годы в работе над созданием ядерного оружия. Некоторым из них возвращение к мирным проблемам академической науки после стольких лет работы на военных давалось нелегко. Это тоже было одной из причин созыва конференции на Шелтер Айленде, которая должна была очертить круг наиболее важных проблем, стоявших перед физикой.
Читать дальшеИнтервал:
Закладка: