Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Тут можно читать онлайн Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Мир, год 1970. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1970
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия краткое содержание

Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - описание и краткое содержание, автор Эрик Роджерс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - читать онлайн бесплатно полную версию (весь текст целиком)

Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - читать книгу онлайн бесплатно, автор Эрик Роджерс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если вести счет времени назад, начиная с настоящего времени, то первый триллион дней будет одним и тем же в обеих шкалах времени; для следующего триллиона маятниковых дней атомные часы будут работать вдвое медленнее и покажут только 1/ 2триллиона дней и т. д. Если мы путешествуем в прошлое такими периодами в триллион дней по маятниковым часам, то соответственно пройдем:

ПО МАЯТНИКОВЫМ ЧАСАМ.

1 триллион дней + 1 триллион + 1 триллион +…

ПО АТОМНЫМ ЧАСАМ.

1 триллион дней + 1/ 2триллиона + 1/ 4триллиона +…

Во втором ряду никогда не получится больше 2 триллионов, хотя первый ряд растет до бесконечности. Таким образом, отсчитывая время по атомным часам, мы приходим к конечному начальному времени. (2 триллиона дней назад в нашем примере), а соответствующий интервал для маятниковых часов сдвигается до минус бесконечности.

В этом примере, если измерять время с помощью радиоактивных превращений или по вращению Земли (которое определяет звездный день), мы должны будем прийти к выводу, что Вселенная возникла примерно 2 триллиона лет назад, но мы никогда не смогли бы вернуться назад к началу Вселенной, отсчитывая маятниковые дня или солнечные годы.

111

Поскольку в этом задании вы не знаете массы Земли, то в своем ответе можете обозначить ее буквой М .

112

Объяснение термина «оценка» см. в гл. 11Интерлюдия. Приложение во арифметике », входит в т 1 настоящего издания), а также см. примечание в конце гл. 22 (стр. 293 и 294).

113

Из книги «People in Quandaries», New York, 1946.

114

Гл. 44Современная физика ») входит в т. 3 настоящего издания.

115

Определение размеров атомов из рассмотрения процесса их столкновений дает различные результаты, так как при сильных столкновениях атомы как бы сплющиваются и их размеры уменьшаются. Поэтому при определении размеров с помощью таких косвенных измерений мы должны прибегать к некоторым теоретическим допущениям.

116

Гл. 5Связь между напряжением и деформацией ») входит в т. 1 настоящего издания.

117

Превосходное обсуждение этих вопросов содержится в сообщении Джемса Б. Конанта ( James В. Соnant , The Growth of the Experimental Sciences, Harvard, 1949). Более подробное обсуждение «тактики и стратегии науки» можно найти в книге того же автора (On Understanding Science).

118

Гл. 1Земное тяготение ») входит в т. 1 настоящего издания.

119

Если бы Фауст имел в своем распоряжении соответствующее оборудование, он смог бы предложить вам микрофон, присоединенный к стеклянному столу, а также к усилителю и громкоговорителю. Если вы покатите стальной шарик по столу, то действительно услышите шумы, напоминающие хруст.

120

Мы можем даже показать, что если медный брусок потереть о другой медный брусок, крошечные частицы, невидимые простым глазом, переходят с одного бруска на другой. Никакими химическими методами это взаимопроникновение продемонстрировать, конечно, не удается. Однако его можно показать с помощью других методов, о чем вы узнаете в конце нашей книги.

121

Тот же метод «научного подхода» применяется некоторыми учеными в других областях, например в области общественных наук. Он оказывается полезным, если ему не следуют со слепым энтузиазмом — в последнем случае он может препятствовать прогрессу. Кроме того, мы не можем быть уверены в том, что метод, применимый в физике, окажется столь же плодотворным и в других областях науки.

122

С прекрасным примером решающего эксперимента мы встречаемся в истории оптики. Двести лет назад существовали две точки зрения на природу света: корпускулярная теория Ньютона и волновая теория Гука и Гюйгенса. Обе теории объясняли общие свойства поведения световых лучей, например отражение и преломление, но вместе с тем исследование второго явления — преломления — могло служить решающей проверкой того, какая из двух теорий правильна.

Когда световые лучи падают под углом на поверхность воды, их наклон изменяется (направление луча приближается к направлению нормали к поверхности воды). Это изменение направления луча на границе двух сред называется преломлением ; оно было хорошо известно как свойство света на протяжении тысячелетий. Птолемей вывел приближенный закон для угла преломления, а Снеллиус установил точный закон преломления за 50 лет до того, как Ньютон написал свою «Оптику». Обе теории — и Ньютона и Гюйгенса — объясняли преломление света и обе предсказывали закон Снеллиуса:

А. Корпускулы света должны притягиваться водой по мере приближения к ее поверхности (подобно молекуле пара, возвращающейся в жидкость).

Тогда их количество движения изменится следующим образом:

1) вертикальная компонента количества движения возрастет (под действием сил притяжения);

2) горизонтальная компонента останется неизменной (из соображений симметрии). В результате направление потока корпускул в воде приблизится к нормали к ее поверхности, т. е. будет наблюдаться преломление. Из геометрических соотношений вытекает закон Снеллиуса.

При таком изменении количества движения корпускулы должны двигаться в воде быстрее, чем в воздухе.

Б. Согласно волновой теории, гребни падающих световых волн должны задерживаться; попадая на поверхность воды, они должны поворачиваться и распространяться в воде по направлению, лежащему ближе к нормали.

Отсюда следует, что световые волны должны распространяться в воде медленнее , чем в воздухе.

Сравнение скорости света в воде и в воздухе могло бы стать решающим экспериментом при проверке правильности этих теорий. Такой решающий эксперимент был произведен Фуко лишь в 1850 г — через полтора столетия после Ньютона, Гука и Гюйгенса. Фуко показал, что свет распространяется в воде медленнее, чем в воздухе. Таким образом, вопрос был решен не в пользу теории корпускул, но только не в пользу данной частной модели, т. е. корпускул, имеющих постоянную массу и движущихся в воде с возрастающими скоростью, количеством движения и энергией. Возьмем вместо этого корпускулы, которые имеют одну и ту же энергию в воздухе и в воде, но масса которые изменяется при их попадании в воду. Тогда мы сможем сформулировать теорию, которая предскажет закон Снеллиуса и согласно которой корпускулы будут двигаться в воде медленнее, чем в воздухе. В этом случае найти выход из положения было легко, хотя результат получался неправильный, однако почти всякая теория может пережить свое осуждение «решающим экспериментом», прибегнув к сложным усовершенствованиям или изменениям.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эрик Роджерс читать все книги автора по порядку

Эрик Роджерс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия отзывы


Отзывы читателей о книге Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия, автор: Эрик Роджерс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x