Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия
- Название:Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия
- Автор:
- Жанр:
- Издательство:Мир
- Год:1970
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрик Роджерс - Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия краткое содержание
Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
К. С. Перс(1898 г.) Американский философ
Эта и последующая части охватывают столетие, богатое достижениями науки, когда был заложен фундамент современной атомной физики Кинетическая теория газов и закон сохранения энергии стали мощным орудием исследования и дали толчок к развитию важных идей. Новые данные и методы исследования появились в разделе «Электричество».
Глава 25. Великая теория — кинетическая теория газов
«Поистине это загадочно, — заметил Ватсон. — Как выдумаете, что бы это могло означать?»
«Пока у меня нет фактов, — сказал Холмс — Строить же теорию, не имея фактов — большая ошибка. Невольно начинаешь подгонять факты под теорию вместо того, чтобы объяснять теорией факты».
А. Конан Дойль, «Шерлок Холмс»
Теория всемирного тяготения Ньютона приобрела мировую известность. Его «Принципы» выдержали три прижизненных издания. Популяризация книги стала модной при королевских дворах Европы. Объяснение «Принципов» для широкого круга читателей написал сам Вольтер. Была издана даже «Теория Ньютона в изложении для дам». На образованных людей теория Ньютона произвела впечатление не только способностью блестяще навести порядок «на небеси», но и тем, что она явилась предвестником грядущих великих открытий. Мы считаем теорию Ньютона правильной, ибо она оказалась простой, плодотворной и связала воедино множество различных явлений, дав людям глубокое понимание.
Теория проста, ибо основана на ряде четких утверждений. Эта простота не нарушается тем, что получение некоторых выводов требует использования сложной математики. Успех теории Ньютона породил попытки создать другие теории, в основе которых лежали бы также законы движения. Например, очень простым кажется поведение газов. Нельзя ли построить такую теорию, которая «предсказывала» бы закон Бойля и приводила бы к другим следствиям, обогащая наше понимание?
Такие попытки привели к созданию кинетической теории газов. Суть ее заключается в идее, которая, если вдуматься, как и большинство великих открытий, довольно проста: давление газа есть результат бомбардировки стенок мельчайшими частичками, «молекулами», газа. Газы обладают простыми свойствами. Они всегда заполняют сосуд и в отличие от твердых тел или жидкостей оказывают одинаковое давление на все стенки сосуда. При постоянной температуре произведение (д авление )х( объем газа ) остается постоянным независимо от того, сжат ли газ или разрежен. Нагревание газов увеличивает либо их давление, либо объем, либо и то и другое, но происходит это у всех газов одинаково. Газы подвижны, легко проникают друг в друга и просачиваются через поры в стенках. Можно ли «объяснить» эти свойства на основе механической картины? Последователи Ньютона возродили идею греческих философов о том, что вещество состоит из «атомов огня», находящихся в постоянном движении. Теперь, вооруженные механикой, они могли придать этой картине реальный смысл и выяснить, на что же способны «атомы». Наиболее поразительным свойством, которое смогла объяснить такая теория, был закон Бойля.
Закон Бойля
В 1661 г. Бойль «не без удовлетворения и восхищения» объявил о сделанном им открытии — давление и объем находятся «в обратной пропорции». Этим он хотел сказать: ( давление )~(1/ объем ) или при сжатии воздуха произведение ( давление )х( объем ) остается постоянным. Тот факт, что воздух при нагревании расширяется, был хорошо известен, так что необходимость оговорки «при постоянной температуре» была очевидна. Так Бойль открыл «воздушную пружину» — пружину, которая в отличие от твердой пружины Гука обладает переменной жесткостью.
В лаборатории вам, вероятно, приходилось знакомиться с «опытом Бойля» на примере сухого воздуха, но это делалось не для того, чтобы «открыть» известный закон, а в качестве упражнения для проверки вашего «искусства в обращении с природой». Вы были ограничены малыми изменениями давления (скажем, от 1/ 2до 2 атм), и точность лимитировалась колебаниями комнатной температуры и конусообразностью стеклянного цилиндра, содержащего газ [123]. Если отложить на графике зависимость давления от объема , то окажется, что точки лягут на гиперболу. Однако трудно быть уверенным, что получилась именно гипербола, и считать, что мы подтвердили закон Бойля [124]. Поэтому лучше откладывать зависимость давления от 1/ объем и искать прямую линию, проходящую через начало координат.
Измерения, проведенные Бойлем, не были очень точны и ограничивались давлением от доли атмосферы до 4 атм. Если вы проведете более точные измерения, то обнаружите, что pV меняется лишь на десятые доли процента. На вашем графике зависимости р от 1/ V экспериментальные точки лягут весьма близко к теоретической прямой, проходящей через начало координат.
Поскольку ( масса )/( объем ) есть плотность , а масса постоянна, то величина 1/ V характеризует плотность, и закон Бойля гласит:
ДАВЛЕНИЕ ~ ПЛОТНОСТЬ
В этом и состоит смысл следующего утверждения элементарной теории газов: «если поместить в ящик вдвое больше молекул, давление увеличится ровно вдвое».
Фиг. 1. Закон Бойля.
При проверке закона Бойля все измерения делаются при одной и той же температуре , т. е. линии на графике являются изотермами. Разумеется, на одной диаграмме мы можем изобразить несколько изотерм, как на фиг. 2.
Фиг. 2. Изотермы (закон Бойля).
Однако с расширением области давлений наблюдаются заметные отклонения от закона Бойля. Этот закон лишь приближенно описывает поведение реальных газов. Он оказывается точным при малых давлениях и нарушается при больших, когда газ сжимается до высокой плотности. На фиг. 3 показаны экспериментальные данные при давлениях вплоть до 3000 атм. (Графики, описывающие поведение СО 2вплоть до ожижения, приведены в гл. 30 .)
Фиг. 3. Отклонения от закона Бойлядля воздуха при комнатной температуре.
Кривые дают зависимость давления от объема для идеального газа, подчиняющегося закону Бойля. Точки показывают поведение воздуха и при малых давлениях неотличимы от кривых. Масштаб по горизонтальной оси растягивается в 10 раз, а по вертикальной оси сжимается в 10 раз.
Теория
Бойль пытался угадать механизм, лежащий в основе его закона. Будучи хорошим химиком, он представил себе, что закон обусловлен поведением крохотных частичек. Частички газа, думал он, сопротивляются давлению, подобно груде маленьких шариков свалявшейся шерсти. Ньютон пошел дальше и вычислил силу отталкивания, необходимую для объяснения закона Бойля. Затем Д. Бернулли опубликовал свою теорию, которая предсказывала закон Бойля, не используя каких-либо специальных сил. Он показал, что движущиеся частицы, бомбардируя стенки сосуда, должны производить давление; он предположил также, что нагревание газа заставляет частицы двигаться быстрее. Это было началом современной теории. Попытка была смелая, но рассмотрение оказалось неполным. Лишь спустя столетие, в 1840 г., Джоуль и другие создали «кинетическую теорию газов», в основе которой лежало следующее утверждение:
Читать дальшеИнтервал:
Закладка: