Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
- Название:Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
- Автор:
- Жанр:
- Издательство:Мир
- Год:1973
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра краткое содержание
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Чтобы получить полный ускоряющий импульс, ион должен попасть в промежуток D - D ' в то время, когда разность потенциалов между D и D ' максимальна. Если же он попадет туда немного раньше или немного позже, то ускорение будет меньшим. Если ион опоздает на четверть периода, то он вовсе не получит ускоряющего импульса, а при задержке на полпериода ион будет двигаться против электрического поля, т. е. будет тормозиться.
Очевидно, нужно подобрать такую частоту генератора, чтобы максимум напряжения в промежутке D - D ' приходился на момент нахождения в нем иона, а за время движения иона по первой полуокружности поле успевало бы изменить свое направление и достичь максимального значения к моменту подлета иона к электроду. Но как быть с последующим движением иона, когда он начнет описывать все большие и большие полуокружности? Будет ли при этом ион успевать за периодическими изменениями электрического поля? Нужно ли менять частоту генератора таким образом, чтобы ионы каждый раз получали максимальный импульс, или можно заставить вращаться ионы по полуокружностям различных радиусов за одно и то же время? Вторая возможность была бы наилучшим решением проблемы, но можно ли ее осуществить? Другими словами, когда ион движется быстрее по большей полуокружности, будет ли путь достаточно длинным, чтобы пройти его за прежнее время? Для исследования этой задачи нужно было бы проделать «циклотронную алгебру» задачи 1 . Проведите расчет, если вы этого еще не сделали, и вы обнаружите, что если магнитное поле постоянно во всей области движения иона, то и время движения иона по полуокружностям любого радиуса постоянно!
В этом основная причина простоты работы циклотрона. Генератор создает переменное напряжение фиксированной частоты, соответствующей величине магнитного поля и отношению е / М для кона ( е — заряд, М — масса иона), которое в регулярные интервалы времени сообщает пучку ионов ускоряющие импульсы; ионы движутся по все увеличивающейся спирали, состоящей из полуокружностей нарастающих радиусов.
Фиг. 111. Усовершенствование упрощенного циклотрона.
Заменим пластины D и D ' решетками, так чтобы ион мог свободно пролетать через отверстия и двигаться по спирали, состоящей из полуокружностей. Вместо того чтобы переключать туда-сюда клеммы батареи, подсоединим D и D ' к генератору, так что в промежутке D — D ' создается переменное электрическое поле. Это поле должно достигать максимального значения «+» или «—» через одинаковые промежутки времени, причем тогда, когда в эту область влетают ионы.
Фиг. 112. Усовершенствование упрощенного циклотрона до практически действующего устройства.
Вместо решеток D и D ' поставим друг против друга пару дуантов (дуант — полая полукруглая коробка с открытым торцом) так, чтобы их торцы занимали место пластин D и D '. В пространстве между антами создается переменное электрическое поле. Полые дуанты экранируют ионы при их движении по полуокружностям от влияния случайных электрических полей.
Вернемся теперь к другим вопросам. Как предохранить ионы от действия электрического поля при их движении по полуокружностям за промежутком D - D ' и как избежать бесполезной траты ионов при их столкновениях с электродами D и D '? Обе проблемы решаются одновременно, если заменить пластинки D и D ' полыми коробками определенной формы. Известно, что внутри закрытой металлической коробки электрическое поле равно нулю; электрические заряды, подводимые к ней, располагаются на внешней поверхности металла, вследствие чего обращается в нуль электрическое поле как в стенках коробки, так и в пространстве внутри нее. В почти закрытой коробке электрическое поле практически везде равно нулю, за исключением областей пространства, непосредственно прилегающих к отверстию. Поэтому простые пластины D и D ' мы заменим плоскими, почти закрытыми медными коробками, расположенными так, чтобы между их открытыми частями остался тот же узкий промежуток D - D '. Размеры коробок выбираются так, чтобы в них помещалась самая большая полуокружность траектории иона. Чтобы наглядно представить себе вид этих коробок, предположим, что мы разрезали в вертикальной плоскости на две равные половинки консервную банку.
В результате получились две коробки, имеющие форму D и D ; вследствие такой формы их и называют «дуантами». Там, где в рассмотренной нами раньше грубой схеме располагались металлические пластины с отверстиями, в реальной машине находятся открытые плоскости дуантов. Таким образом, теперь ионы не теряются при столкновениях с электродами, так как они влетают в открытые щели дуантов; кроме того, ионы экранированы от влияния случайных электрических полей, так как их траектории почти полностью лежат в пространстве, ограниченном медными стенками дуантов.
Теперь мы должны рассмотреть другие проблемы: как создать ионы в пространстве между дуантами, как избежать нежелательных столкновений ионов с молекулами газа и, наконец, как «вывести» пучок ионов из циклотрона, т. е. как направить пучок ускоренных ионов на экспериментальные мишени — ведь именно с этой целью они и ускорялись? Ионы образуются при облучении газообразного водорода электронами из небольшой электронной пушки, расположенной вблизи центра камеры. Для этой цели внутрь камеры вводится тонкая струя водорода под низким давлением; большие насосы откачивают излишки водорода и случайно попавшие внутрь молекулы воздуха, поддерживая в камере максимально возможный вакуум.
Таким образом, полностью процесс ускорения ионов в циклотроне протекает следующим образом: в центре камеры циклотрона атомы водорода ионизуются потоком электронов; электрическое поле в промежутке D - D ' сообщает образовавшимся ионам небольшую энергию; описав полуокружность внутри дуанта, ионы возвращаются в ускоряющий промежуток между дуантами как раз в тот момент, когда поле изменило направление и достигло максимальной величины, снова ускоряются, описывают полуокружность большего радиуса во втором дуанте, снова ускоряются в промежутке D - D ' (электрическое поле успело снова изменить свое направление), описывают еще большую полуокружность в первом дуанте (скорость ионов возросла) и т. д. до тех пор, пока радиус самой большой полуокружности не сравняется с размерами дуантов. На самой дальней от центра орбите энергия ионов достигает огромного значения; в принципе экспериментальные образцы для облучения ионами могут быть внесены прямо внутрь камеры. Однако, для того чтобы вводить и выводить мишени из камеры, необходимо соорудить вакуумный шлюз (подобно люку в подводных лодках для выхода из лодки под водой). Кроме того, для многих экспериментов удобнее вывести пучок ионов с наибольшей полуокружности (т. е. обладающих наибольшей энергией) наружу через окошечко из тонкого листа металла в стенке кожуха. Пучок выводится при помощи «отклоняющей пластины», на которую подается соответствующее электрическое напряжение. Затем этими ионами высокой энергии, обычно протонами, можно бомбардировать по нашему выбору любую мишень, наблюдая при этом изумляющее разнообразие ядерных превращений.
Читать дальшеИнтервал:
Закладка: