Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
- Название:Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра
- Автор:
- Жанр:
- Издательство:Мир
- Год:1973
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрик Роджерс - Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра краткое содержание
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
3∙1,0076 + 4∙1,0089 = 7,0588.
Эта сумма больше истинной массы, равной 7,0165. Поэтому при объединении в ядро Li 7нуклоны «потеряли» некую часть своей массы, или, точнее, при этом выделилась энергия, унесшая эту массу с собой. Казалось бы, потеря массы невелика, но она отвечает огромной энергии (45 000 000 эв на одно образовавшееся ядро Li 7).
Подобный эффект имеет место для любого ядра в периодической системе элементов (кроме Н 1): масса ядра всегда меньше суммы масс составляющих его нуклонов. Поэтому при образовании любого ядра из протонов и нейтронов, а это возможно, должна выделяться огромная энергия. Эта энергия называется энергией связи ядра. Иными словами, энергия связи — это энергия, которую необходимо затратить, чтобы разорвать ядро на отдельные нуклоны.
При объединении в ядро составляющие его нуклоны должны потерять часть своей массы — массу, отвечающую энергии связи.
Фиг. 165. Энергия связи.
а — энергия связи равна той энергии, которая выделилась бы, если бы нейтроны и протоны соединить вместе и образовать составное ядро; б— поэтому энергия связи равна той энергии, которую нужно затратить, чтобы ядро разбить на куски; в— энергия связи на нуклон — наибольшая для самых стабильных ядер средних элементов.
Фиг. 166. Треки осколков деления на фотоснимках в камере Вильсона.
На этих снимках осколки деления оставили толстые треки, что свидетельствует о большой величине заряда осколков. Некоторые из треков меньшей толщины созданы протонами, выбитыми нейтронами пучка, другие — а-частицами из урана ( J. К. Воggild, К. J. Brostrom, Т. Lauritsen , Royal Danish Academy of Arts and Science). Трек осколка деления ядра урана (слева) при облучении нейтронами. Осколок деления, двигавшийся через газовую смесь водорода и водяного пара, выбивал вперед и вбок (короткие следы) протоны, испытав одно сильное столкновение с ядром кислорода (длинный трек).
Фиг. 167. Треки двух осколков деления ядра урана, выходящие из тонкой металлической пластинки, помещенной посреди камеры.
Фиг. 168. Фотоснимок в камере Вильсона: космические лучи».
Частицы космических лучей, проходя сквозь слой плотного вещества над камерой, создают электроны и позитроны (быстрые и медленные), оставляющие след в камере, помещенной в сильное магнитное поле. На снимке видно необычное событие: распад нестабильной частицы (два жирных трека в виде буквы V ).
По измеренным массам атомов можно вычислить энергию связи и, зная ее величину, предсказать величину энергии, которая должна выделиться в том или ином ядерном событии, малая при бомбардировке или большая при делении и синтезе ядер. Однако в силу того, что нам приходится иметь дело с разными ядрами, распадающимися различными путями, подсчет энергии легче производить, если пользоваться массой, приходящейся на один нуклон , т. е. отношением массы всего ядра к полному числу нуклонов . Тогда ясно, что если в каком-либо событии масса на один нуклон уменьшилась, то нуклоны потеряли часть своей массы и, следовательно, при этом выделилась какая-то энергия. Поэтому обычно рисуют очень важный график: масса на один нуклон в зависимости от массового числа для всех элементов. Из этого графика сразу видно, какую массу потерял каждый нуклон при образовании того или иного атома: достаточно сравнить значение массы на один нуклон в этом атоме со средней массой изолированного нуклона — величиной, значение которой лежит где-то между 1,0076 для протона и 1,0089 для нейтрона, скажем 1,0083. Чем ниже точка, отвечающая тому или иному атому на графике, тем больше его энергия связи.
Фиг. 169. Треки в фотоэмульсии.
Треки частиц здесь образуют не капельки воды, как в камере Вильсона, а почернение в фотоэмульсии из-за выделившихся частичек серебра. На этом фотоснимке, сильно увеличенном, показана «звезда», или «взрыв» ядра: частица космических лучей столкнулась с одним из ядер фотоэмульсии, вероятно с ядром серебра, и разбила его на 7 протонов, 5 альфа-частиц и несколько тяжелых осколков. Трек первичной частицы не виден.
Масса на один нуклон вычисляется следующим образом:
МАССА на ОДИН НУКЛОН = МАССА ЯДРА/ЧИСЛО НУКЛОНОВ
где
МАССА ЯДРА = МАССА НЕЙТРАЛЬНОГО АТОМА — МАССА ЕГО ЭЛЕКТРОНОВ.
МАССА АТОМА атома (или, точнее, его ИОНА +) измеряется на масс-спектрографе с высокой точностью; она выражается в атомных единицах массы (в этих единицах масса О 16равна 16,0000); число нуклонов в атомном ядре ( протоны + нейтроны ) — его массовое число — это масса атома (в атомных единицах массы) («атомный вес»), округленная до ближайшего целого числа.
Для любого атома в периодической системе элементов, равно как и для всех его изотопов, масса ядра (в атомных единицах массы) мало отличается от целого числа. Например:
— масса водорода равна примерно 1, точнее 1,0076
— масса лития 7,0165
— масса железа меньше 56, а именно 55,938
— масса ядра урана 235,068
Это целое число (1…. 7…. 56…. 235….) означает число нуклонов в ядре, т. е. его массовое число. Разности между атомными (или ядерными) массами и целыми числами показывают различия в энергиях связи — в величине энергии, выделяемой при объединении нуклонов в ядро.
Если массу ядра разделить на число нуклонов, т. е. на массовое число , то получаются величины, которые начинаются с 1,009 для нейтрона и 1,008 для протона, а затем падают по величине до минимального значения, равного 0,9993 для «средних элементов», таких, как железо, медь, бром, криптон, и далее медленно возрастают примерно до 1,0003 в случае урана. Поэтому, если бы тяжелое ядро можно было поделить на два промежуточных ядра, то его нуклоны потеряли бы значительную массу в силу большого выделения энергии. Как это видно из графика от урана к средним элементам, масса на один нуклон падает примерно на 0,001. Для 235 нуклонов в ядре U 235масса, отвечающая выделенной энергии, была бы равна 235∙0,001, т. е. 0,235 а.е.м. Энергия, отвечающая такой массе, равна 0,235∙931 Мэв, т. е. около 200 Мэв.
Фиг. 170. Кривая «масса, приходящаяся на один нуклон в ядре», в зависимости от массового числа:
Масса, приходящаяся на один нуклон= Масса ядра, найденная с помощью масс-спектрографа/ Полное число протонов и нейтронов

Фиг. 170. (продолжение)
Из графика следует, что энергия при делении может выделяться только в случае тяжелых ядер. Ядра средних элементов — самые стабильные: их нуклоны не могут потерять массу, в какую бы сторону ни двигаться на графике: влево или вправо, т. е. они обладают самой большой энергией связи.
Читать дальшеИнтервал:
Закладка: