Рэй Джаявардхана - Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей
- Название:Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2015
- Город:Москва
- ISBN:978-5-9614-3078-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Рэй Джаявардхана - Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей краткое содержание
Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Открытие массы у нейтрино представляет интерес и для космологии. Нейтрино – вторые по распространенности частицы во Вселенной (после фотонов), поэтому если каждый нейтрино обладает хотя бы минимальной массой, то общая масса этих частиц может оказаться довольно значительной. Некоторые специалисты по космологии надеялись, что именно из нейтрино может состоять таинственная темная материя, факт существования которой известен только по гравитационному воздействию этой материи на галактики и скопления галактик. Однако масса нейтрино все-таки слишком ничтожна, чтобы именно на нейтрино могла приходиться вся темная материя. Таким образом, должна существовать какая-то другая частица (или частицы), еще неизвестные физической науке. Охота продолжается, но подходящая «дичь» пока не найдена.
Открытия, сделанные в лаборатории Super-K и SNO, подготовили почву для новых экспериментов с нейтрино. Цель этих экспериментов заключается в точном измерении того, как именно нейтрино переходят из одного аромата в другой. Физики часто характеризуют такие осцилляции в контексте параметров, называемых «углы смешивания». В схожем контексте принято описывать аэродинамику самолета, в которой различаются параметры «тангаж», «крен» и «рыскание». Два из трех углов смешивания удалось измерить в лабораториях Super-K и SNO, а величина третьего, называемого «Ө13» (тета-один-три), оставалось неизвестной. Измерив все три угла смешивания, физики смогут точно определить попарные разности масс трех состояний нейтрино. Более того, в этом случае нас, вероятно, ждут новые интересные открытия в области новой физики, связанные с мельчайшими деталями преобразований нейтрино. В настоящее время ученые активно ищут ответ на вопрос, совпадают ли свойства нейтрино и антинейтрино. Антинейтрино – аналог нейтрино, состоящий из антивещества. Если эти свойства не совпадают, то понимание различий между нейтрино и антинейтрино может оказаться важнейшим шагом к ответу на вопрос: почему во Вселенной наблюдается настолько больше вещества, чем антивещества? Мы подробнее обсудим эту проблему в главе 7. Второй актуальный вопрос, стоящий перед физиками, – существуют ли и другие ароматы нейтрино кроме известных трех? Некоторые экзотические теории предполагают существование четвертого аромата, условно именуемого «стерильные нейтрино». Такие нейтрино якобы вообще не взаимодействуют с материей, но их можно обнаружить косвенными методами. Вероятно, обнаружить этот наиболее инертный сорт нейтрино будет гораздо сложнее, чем остальные. Но с космологической точки зрения стерильные нейтрино могут играть заметную роль, если их общая масса достаточно велика и сопоставима с массой темной материи.
В новейших экспериментах по изучению осцилляций используются нейтрино техногенного происхождения – в частности, получаемые из ядерных реакторов и ускорителей частиц, – а не солнечные или атмосферные нейтрино, как в лабораториях Super-K и SNO. Вскоре после открытия осцилляции солнечных нейтрино японские физики подтвердили реальность этого феномена, измеряя нейтрино из ядерных реакторов, расположенных в районе Камиока. Действительно, через детектор прошла лишь часть испущенных нейтрино, в согласии с представлением о том, что по дороге от реактора часть из них сменила аромат. В ускорителях образуются целые лучи нейтрино; благодаря этому ученые могут с точностью определять количество, типы и энергии этих частиц. В США был поставлен эксперимент MINOS, в ходе которого луч нейтрино из лаборатории Fermilab близ Чикаго направляли в детектор, расположенный на севере штата Миннесота примерно в 720 км от лаборатории в заброшенном железном руднике Судан. MINOS также зафиксировал осцилляции нейтрино.
Один из крупнейших нейтринных экспериментов, ведущихся в настоящее время, называется «T2K», – эта аббревиатура означает «Токай – Камиока». В ходе эксперимента мощный луч нейтрино направляется через японский остров Хонсю. Ускоритель частиц, где образуются нейтрино, расположен в городе Токай на восточном побережье Японии, а детектор находится в районе Камиока на западе острова, примерно в 290 км от Токая. Кстати, город Токай в Японии довольно известен – именно на него в нескольких японских фильмах нападает монстр Годзилла. Строительство и последующая эксплуатация этого комплекса осуществляется международной коллаборацией, в которой заняты около 500 ученых из 12 стран. Сбор экспериментальных данных начался в январе 2010 г. Предполагалось, что первые результаты будут объявлены на семинаре в Токио, который был запланирован на 11 марта 2011 г. в 15.00 по токийскому времени. Однако всего за 14 минут до начала этого мероприятия на северо-восточном побережье Японии разразилось катастрофическое землетрясение силой 9 баллов по шкале Рихтера. Это было сильнейшее землетрясение, когда-либо зарегистрированное в стране, на берег обрушились опустошительные цунами. По сделанным впоследствии оценкам, общее количество жертв землетрясения и цунами составило более 15 000 человек, а суммарный экономический ущерб превысил $200 млрд. Самой серьезной катастрофой в ходе этих событий стала авария на атомной станции «Фукусима», где из-за волн цунами остались без электропитания охладительные системы реактора, причем стихия уничтожила даже резервные дизельные генераторы.
Брайан Кирби, аспирант из Университета Британской Колумбии (UBC) в Канаде, прибыл в Токай за день до землетрясения, чтобы заступить на двухнедельную смену в аппаратном зале нейтринной лаборатории. Когда днем 11 марта все здание внезапно затряслось, он и еще несколько сотрудников спрятались под столом. «Толчки продолжались довольно долго», – вспоминал Брайан. Вскоре отключилось электричество. Когда толчки поутихли, Кирби с коллегами выбрались наружу. «Еще несколько минут продолжались афтершоки [28] Афтершоки – слабые сейсмические толчки вскоре после землетрясения. – Прим. пер.
, земля казалась зыбкой», – рассказывает Кирби. Он не представлял, на каком расстоянии от эпицентра расположен Токай, каким разрушительным оказалось это землетрясение в районе города Сендай, всего в 200 км севернее. Убедившись, что стихия улеглась, Брайан с коллегами сели на велосипеды, покатили к дому, который арендовали неподалеку, и устроили барбекю, пока запасенные продукты в холодильнике не испортились – ведь электричества не было.
Спустя несколько часов в Ванкувере Скотта Озера разбудила жена и рассказала, что в Японии произошло сильное землетрясение. Озер работал профессором в университете Британской Колумбии – именно он был канадским представителем коллаборации T2K, выполнявшим обязанности спикера, и именно под его руководством Кирби защитил диссертацию. Озер открыл онлайновую карту и убедился, что эпицентр землетрясения был не так далеко от Токая. Он сразу же проверил электронную почту, надеясь найти в ящике письмо от своего аспиранта. Озер обнаружил массу сообщений от коллег по T2K, работавших за пределами Японии, а последнее письмо в папке «Входящие» было как раз от перепуганной матери Брайана Кирби. Озер послал ей японский номер мобильника Кирби и попытался позвонить парню сам. К удивлению и облегчению профессора, Кирби поднял трубку. Аспирант сообщил, что у него все нормально, только нет электричества, Интернета и батарея в телефоне садится. Сотрудники T2K организовали эвакуацию коллег из Токая вглубь острова, а затем и из Японии. Кирби покинул Японию спустя несколько дней.
Читать дальшеИнтервал:
Закладка: