Брайан Грин - Ткань космоса. Пространство, время и текстура реальности

Тут можно читать онлайн Брайан Грин - Ткань космоса. Пространство, время и текстура реальности - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Книжный дом «ЛИБРОКОМ», год 2009. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Ткань космоса. Пространство, время и текстура реальности
  • Автор:
  • Жанр:
  • Издательство:
    Книжный дом «ЛИБРОКОМ»
  • Год:
    2009
  • Город:
    Москва
  • ISBN:
    978-5-397-00001-7
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Брайан Грин - Ткань космоса. Пространство, время и текстура реальности краткое содержание

Ткань космоса. Пространство, время и текстура реальности - описание и краткое содержание, автор Брайан Грин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Брайан Грин — один из ведущих физиков современности, автор «Элегантной Вселенной» — приглашает нас в очередное удивительное путешествие вглубь мироздания, которое поможет нам взглянуть в совершенно ином ракурсе на окружающую нас действительность.
В книге рассматриваются фундаментальные вопросы, касающиеся классической физики, квантовой механики и космологии. Что есть пространство? Почему время имеет направление? Возможно ли путешествие в прошлое? Какую роль играют симметрия и энтропия в эволюции космоса? Что скрывается за тёмной материей? Может ли Вселенная существовать без пространства и времени?
Грин детально рассматривает картину мира Ньютона, идеи Маха, теорию относительности Эйнштейна и анализирует её противоречия с квантовой механикой. В книге обсуждаются проблемы декогеренции и телепортации в квантовой механике. Анализируются многие моменты инфляционной модели Вселенной, первые доли секунды после Большого взрыва, проблема горизонта, образование галактик. Большое внимание уделено новому современному подходу к объяснению картины мира с помощью теории струн/М-теории.
Грин показывает, что наш мир сильно отличается от того, к чему нас приучил здравый смысл. Автор увлекает всех нас, невзирая на уровень образования и научной подготовки, в познавательное путешествие к новым пластам реальности, которые современная физика вскрывает под слоем привычного нам мира.

Ткань космоса. Пространство, время и текстура реальности - читать онлайн бесплатно полную версию (весь текст целиком)

Ткань космоса. Пространство, время и текстура реальности - читать книгу онлайн бесплатно, автор Брайан Грин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако, поразмыслив, можно подумать, что в этом нет ничего удивительного. Вода состоит из молекул H 2O, и волны на поверхности воды возникают, когда группы молекул двигаются согласованным образом. Одна группа молекул H 2O где-то двигается вверх, тогда как другая группа двигается вниз в другом месте. Так что можно было бы подумать, что результаты, отражённые на рис. 4.3, показывают: электроны, подобно молекулам H 2O, при определённых условиях могут двигаться согласованно, порождая в целом, на макроскопическом уровне, картину, характерную для волнового движения. Хотя на первый взгляд такое предположение может показаться разумным, но реальность оказывается гораздо более неожиданной.

Изначально мы предположили, что электронный луч из электронной пушки на рис. 4.3 бьёт непрерывно. Но мы можем так отрегулировать пушку, что ежесекундно она будет испускать всё меньше и меньше электронов и таким путём можем опустить её скорострельность до уровня, скажем, всего один электрон за десять секунд. Набравшись терпения, мы можем провести этот эксперимент в течение долгого времени и зарегистрировать места соударений каждого отдельного электрона, прошедшего через щели. На рис. 4.4 а–в отражены результаты эксперимента после часа, половины дня и целого дня наблюдений соответственно. В 20-х гг. прошлого века такие картины потрясли основания физики. Мы видим, что даже отдельные электроны, проходящие через щели независимо друг от друга, порождают интерференционную картину, характерную для волнового движения.

Рис 43 а Классическая физика утверждает что пучок электронов пройдя - фото 24 Рис 43 а Классическая физика утверждает что пучок электронов пройдя - фото 25

Рис. 4.3.( а ) Классическая физика утверждает, что пучок электронов, пройдя через две щели в установленной на их пути преграде, должен оставить на экране две ярких полосы напротив щелей. ( б ) Эксперимент же подтверждает предсказание квантовой физики: электроны порождают интерференционную картину, что свидетельствует об их волновой природе

Рис 44Электроны испускаемые электронной пушкой поодиночке в сторону щелей - фото 26 Рис 44Электроны испускаемые электронной пушкой поодиночке в сторону щелей - фото 27 Рис 44Электроны испускаемые электронной пушкой поодиночке в сторону щелей - фото 28

Рис. 4.4.Электроны, испускаемые электронной пушкой поодиночке в сторону щелей, создают интерференционную картину точка за точкой. На рис. ( а )–( в ) отражено формирование картины с течением времени

Это похоже на то, как если бы отдельная молекула H 2O могла вести себя подобно целой волне. Но как такое может быть? Волновое движение кажется коллективным свойством, которым не обладают отдельные составляющие. Если зрители на стадионе каждые несколько минут вскакивают со своего места и опускаются обратно независимо друг от друга, то волна не возникнет. Более того, кажется, что для создания интерференционной картины волна, испущенная из одного места, должна накладываться на волну, испущенную из другого места. То есть какое вообще отношение понятие интерференции может иметь к отдельной индивидуальной частице? Тем не менее, как свидетельствует интерференционная картина на рис. 4.4, хотя электроны и являются мельчайшими частицами материи, каждый из них по отдельности имеет волновой характер.

Вероятность и законы физики

Если отдельный электрон является также волной, то что же колеблется? Эрвин Шрёдингер предложил первую догадку: возможно, субстанция, из которого сделаны электроны, может быть размазана в пространстве, и колеблется именно эта размазанная электронная субстанция. С этой точки зрения электрон как частица должен быть резким сгущением в электронном тумане. Однако было быстро осознано, что такое предположение не может быть верным, поскольку даже волна с резким пиком — подобная гигантской приливной волне — в конце концов расплывается. А если электронная волна расплывётся, то можно было бы обнаружить части заряда или массы одного и того же электрона в совершенно разных местах. Но такого никогда не наблюдается. Если мы обнаруживаем электрон, то всегда вся его масса и весь его заряд оказываются сконцентрированными в одной микроскопической области, практически в точке. В 1927 г. Макс Борн выдвинул другое предположение, оказавшееся решительным шагом, позволившим физикам войти в совершенно новую область. Он заявил, что волна — это не размазанный электрон или что-либо, с чем ранее сталкивались в науке. Эта волна, предположил Борн, является волной вероятности .

Чтобы понять, что это значит, представьте себе моментальный снимок волны на поверхности воды: на этом снимке видны области высокой интенсивности (вблизи гребней и впадин) и слабой интенсивности (вблизи плавного перехода от гребней к впадинам). Чем выше интенсивность, с тем большей силой волна может качнуть корабль или обрушиться на побережье. Волны вероятности в представлении Борна тоже имеют области сильной и слабой интенсивности, однако смысл, который он приписал такой волне, является неожиданным: амплитуда волны в данной точке пространства пропорциональна вероятности обнаружения электрона в этой точке пространства . Более всего вероятно обнаружить электрон в областях с большой амплитудой волны, менее вероятно — в областях с малой амплитудой. Если же амплитуда равна нулю в какой-то области пространства, то там электрон никогда не будет обнаружен.

На рис. 4.5 показан «моментальный снимок» волны вероятности с пометками, соответствующими интерпретации Борна. В отличие от случая волны на поверхности воды, однако, этот снимок не может быть сделан фотоаппаратом. Никто никогда непосредственно не видел волны вероятности, да и никогда не увидит, согласно представлениям общепринятой квантовой механики. Такая картинка получается в результате решения математических уравнений (выведенных Шрёдингером, Нильсом Бором, Вернером Гейзенбергом, Полем Дираком и другими физиками). Теоретические расчёты можно сравнить с экспериментальными данными следующим образом. Вычислив волну вероятности электрона в желаемых условиях, мы затем воспроизводим в эксперименте эти условия и измеряем положение электрона; затем этот же эксперимент мы повторяем снова и снова, каждый раз записывая измеренное положение электрона. В отличие от того, что ожидал бы Ньютон, идентичные эксперименты при идентичных начальных условиях не обязательно ведут к идентичным результатам. Вместо этого измерения дают самые разные положения электрона. Иногда мы обнаруживаем электрон здесь, иногда — там, и время от времени — совсем далеко. Если квантовая механика верна, то частота обнаружения электрона в данной точке пространства должна быть пропорциональна амплитуде (точнее, квадрату амплитуды) вычисленной нами волны вероятности в этой точке. За восемьдесят лет экспериментальных проверок предсказания квантовой механики сбывались с впечатляющей точностью.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Брайан Грин читать все книги автора по порядку

Брайан Грин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Ткань космоса. Пространство, время и текстура реальности отзывы


Отзывы читателей о книге Ткань космоса. Пространство, время и текстура реальности, автор: Брайан Грин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x