Ричард Фейнман - 2a. Пространство. Время. Движение

Тут можно читать онлайн Ричард Фейнман - 2a. Пространство. Время. Движение - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    2a. Пространство. Время. Движение
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 2a. Пространство. Время. Движение краткое содержание

2a. Пространство. Время. Движение - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

2a. Пространство. Время. Движение - читать онлайн бесплатно полную версию (весь текст целиком)

2a. Пространство. Время. Движение - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2a. Пространство. Время. Движение

Глава 21

ГАРМОНИЧЕСКИЙ ОСЦИЛЛЯТОР

§ 1. Линейные дифференциаль­ные уравнения

§ 2. Гармонический осциллятор

§ 3. Гармоническое движение и движение по окружности

§ 4. Начальные условия

§ 5. Колебания под действием внешней силы

§ 1. Линейные дифференциальные уравнения

Обычно физику как науку делят на не­сколько разделов: механику, электричество и г. п., и мы «проходим» эти разделы один за дру­гим. Сейчас, например, мы «проходим» в основ­ном механику. Но то и дело происходят стран­ные вещи: переходя к новым разделам физики и даже к другим наукам, мы сталкиваемся с уравнениями, почти не отличающимися от уже изученных нами ранее. Таким образом, многие явления имеют аналогию в совсем других об­ластях науки. Простейший пример: распро­странение звуковых волн во многом похоже на распространение световых волн. Если мы достаточно подробно изучим акустику, то обна­ружим потом, что «прошли» довольно большую часть оптики. Таким образом, изучение явле­ний в одной области физики может оказаться полезным при изучении других ее разделов. Хорошо с самого начала предвидеть такое воз­можное «расширение рамок раздела», иначе мо­гут возникнуть недоумения, почему мы тратим столько времени и сил на изучение небольшой задачи механики.

Гармонический осциллятор к изучению которого мы сейчас переходим будет - фото 1

Гармонический осциллятор, к изучению ко­торого мы сейчас переходим, будет встречаться нам почти всюду; хотя мы начнем с чисто меха­нических примеров грузика на пружинке, ма­лых отклонений маятника или каких-то других механических устройств, на самом деле мы бу­дем изучать некое дифференциальное уравне­ние. Это уравнение непрестанно встречается в физике и в других науках и фактически описы­вает столь многие явления, что, право же, стоит того, чтобы изучить его получше. Такое уравне­ние описывает колебания грузика на пружинке, колебания заряда, текущего взад и вперед по электрической цепи, колебания камертона, порождающие звуковые волны, аналогичные колебания электронов в атоме, порождающие световые волны. Добавьте сюда уравнения, описывающие дей­ствия регуляторов, например поддерживающих заданную температуру термостата, сложные взаимодействия в химиче­ских реакциях и (уже совсем неожиданно) уравнения, от­носящиеся к росту колонии бактерий, которых одновременно и кормят и травят ядом, или к размножению лис, питаю­щихся кроликами, которые в свою очередь едят траву, и т. д. Мы привели очень неполный список явлений, которые описы­ваются почти теми же уравнениями, что и механический осцил­лятор. Эти уравнения называются линейными дифференциаль­ными уравнениями с постоянными коэффициентами. Это урав­нения, состоящие из суммы нескольких членов, каждый из которых представляет собой производную зависимой величины по независимой, умноженную на постоянный коэффициент. Таким образом,

называется линейным дифференциальным уравнением n-го порядка с постоянными коэффициентами (все а n посто­янные).

§ 2. Гармонический осциллятор

Пожалуй простейшей механической системой движение которой описывается - фото 2

Пожалуй, простейшей механической системой, движение которой описывается линейным дифференциальным уравнением с постоянными коэффициентами, является масса на пружинке. После того как к пружинке подвесят грузик, она немного рас­тянется, чтобы уравновесить силу тяжести. Проследим теперь за вертикальными отклонениями массы от положения равнове­сия (фиг. 21.1).

Фиг. 21.1. Грузик, подвешенный на пружинке.

Простой пример гармонического ос­циллятора.

Отклонения вверх от положения равновесия мы обозначим через х и предположим, что имеем дело с абсо­лютно упругой пружиной. В этом случае противодействующие растяжению силы прямо пропорциональны растяжению. Это означает, что сила равна - kx (знак минус напоминает нам, что сила противодействует смещениям). Таким образом, умно­женное на массу ускорение должно быть равно - kx

m(d 2x/dt 2) =-kx. (21.2)

Для простоты предположим, что вышло так (или мы нужным образом изменили систему единиц), что k/m = 1 . Нам предстоит решить уравнение

d 2x/dt 2=-x. (21.3)

После этого мы вернемся к уравнению (21.2), в котором k и m содержатся явно.

Мы уже сталкивались с уравнением (21.3), когда только начи­нали изучать механику. Мы решили его численно [см. вып. 1, уравнение (9.12)], чтобы найти движение. Численным интегри­рованием мы нашли кривую (см. фиг. 9.4, вып. 1), которая пока­зывает, что если частица m в начальный момент выведена из рав­новесия, но покоится, то она возвращается к положению рав­новесия. Мы не следили за частицей после того, как она достиг­ла положения равновесия, но ясно, что она на этом не остано­вится, а будет колебаться (осциллировать). При численном ин­тегрировании мы нашли время возврата в точку равновесия: t= 1,570. Продолжительность полного цикла в четыре раза боль­ше: t 0 =6,28 «сек». Все это мы нашли численным интегрирова­нием, потому что лучше решать не умели. Но математики дали в наше распоряжение некую функцию, которая, если ее про­дифференцировать дважды, переходит в себя, умножившись на -1. (Можно, конечно, заняться прямым вычислением таких функций, но это много труднее, чем просто узнать ответ.)

Эта функция есть: x=cost. Продифференцируем ее: dx/dt=-sint, a d 2 x/dt 2 =-wt=-x. В начальный момент t=0, x=1, а начальная скорость равна нулю; это как раз те пред­положения, которые мы делали при численном интегрирова­нии. Теперь, зная, что x=cost, найдем точное значение вре­мени, при котором z=0. Ответ: t=p/2, или 1,57108. Мы ошиб­лись раньше в последнем знаке, потому что численное интег­рирование было приближенным, но ошибка очень мала!

Чтобы продвинуться дальше, вернемся к системе единиц, где время измеряется в настоящих секундах. Что будет реше­нием в этом случае? Может быть, мы учтем постоянные k и т, умножив на соответствующий множитель cost? Попробуем. Пусть x=Acost, тогда dx/dt=-Asint и d 2 t/dt 2 =-Acost=-x. К нашему огорчению, мы не преуспели в решении уравнения (21.2), а снова вернулись к (21.3). Зато мы открыли важнейшее свойство линейных дифференциальных уравнений: если умно­жить решение уравнения на постоянную, то мы снова получим решение. Математически ясно — почему. Если х есть решение уравнения, то после умножения обеих частей уравнения на

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




2a. Пространство. Время. Движение отзывы


Отзывы читателей о книге 2a. Пространство. Время. Движение, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x