Ричард Фейнман - 6a. Электродинамика

Тут можно читать онлайн Ричард Фейнман - 6a. Электродинамика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    6a. Электродинамика
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - 6a. Электродинамика краткое содержание

6a. Электродинамика - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

6a. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)

6a. Электродинамика - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

6a. Электродинамика

Глава 22

ЦЕПИ ПЕРЕМЕННОГО ТОКА

§ 1. Импедансы

§ 2. Генераторы

§ 3. Сети идеальных элементов; правила Кирхгофа

S 4. Эквивалентные контуры

§ 5. Энергия

§ 6. Лестничная сеть

§ 7. Фильтры

§ 8. Другие элементы цепи

Повторить : гл.2 (вып. 2) «Алгебра»; гл. 23 (вып. 2) «Резонанс»;

гл. 25 (вып. 2) «Линейные системы и обзор»

§ 1. Импедансы

В основном наши усилия при чтении этих лекций были направлены на то, чтобы по­лучить полные уравнения Максвелла. В преды­дущих двух главах мы обсудили следствия этих уравнений. Выяснилось, что они содержат объяснение всех статических явлений, которые мы изучали раньше, и явлений электромагнит­ных волн и света — вопроса, подробно изучав­шегося в самом начале нашего курса. Урав­нения Максвелла дают и то и другое, смотря по тому, где эти поля вычисляются: побли­зости от токов и зарядов или же вдали от них. Есть и промежуточная область, но о ней ничего интересного сказать нельзя; там никаких осо­бых явлений не происходит.

Но в электромагнетизме остается еще не­сколько вопросов, которые стоит осветить. Надо будет обсудить вопрос связи относитель­ности и уравнений Максвелла, т. е. выяснить, что произойдет, если на уравнения Максвелла посмотреть из движущейся системы координат. Важен еще и вопрос о сохранении энергии в электромагнитных системах. Кроме того, существует обширная область электромагнит­ных свойств материалов; до сих пор мы рас­сматривали только электромагнитные поля в пустом пространстве, если не считать изучения свойств диэлектриков. Да и при изучении света все еще оставалось несколько вопросов, которые хотелось бы рассмотреть еще раз с точки зре­ния уравнений поля.

В частности, надо бы еще раз вернуться к вопросу о показателе преломления (особенно у плотных веществ). Наконец, интересны яв­ления, связанные с волнами, заключенными внутри ограниченной области пространства. Мы кратко косну­лись этой проблемы, когда изучали звуковые волны. Но урав­нения Максвелла тоже приводят к решениям, которые пред­ставляют волны электрических и магнитных полей, замкнутые в некотором объеме. В одной из последующих глав мы рас­смотрим этот вопрос, имеющий важные технические примене­ния. И чтобы подойти к нему, мы начнем с того, что изложим свойства электрических цепей при низких частотах. После этого мы сможем сравнить такие системы, когда к уравнениям Максвелла применимо почти статическое приближение, и системы, в которых преобладают высокочастотные эффекты.

Итак, снизойдем с величественных и труднодоступных высот последних нескольких глав и обратим свой взор на сравнительно низменную задачу — задачу об электрических цепях. Впрочем, мы убедимся в том, что даже столь мирские дела оказываются весьма запутанными, если в них вникнуть достаточно глубоко.

В гл. 23 и 25 (вып. 2) мы уже обсуждали некоторые свойства электрических цепей (контуров). Теперь мы повторим часть из­ложенного там материала, но более подробно. Мы по-прежнему будем иметь дело с линейными системами и с напряжениями и токами, которые меняются синусоидально; поэтому мы можем представить все напряжения и токи в виде комплексных чисел, пользуясь экспоненциальными обозначениями, введенными в гл. 22 (вып. 2). Так, меняющееся во времени напряжение V(t) будет записываться в виде

221 где комплексное число не зависящее от t При этом конечно - фото 1

(22.1)

где картинка 2 комплексное число, не зависящее от t. При этом, ко­нечно, подразумевается, что настоящее переменное по времени напряжение V(t) представляется действительной частью комп­лексной функции в правой части уравнения.

Подобным же образом и все другие меняющиеся во времени величины будут считаться - фото 3

Подобным же образом и все другие меняющиеся во времени величины будут считаться изменяющимися синусоидально с той же частотой w. Мы будем писать

(22.2)

и т. д.

Большей частью мы будем писать уравнения, пользуясь обозначениями V, I, e, ...

(вместо картинка 4...), помня при этом, что они изменяются со временем всегда так, как в (22.2).

В прежних наших рассуждениях об электрических цепях мы полагали, что такие вещи, как индуктивность, емкость и со­противление, вам знакомы. Сейчас мы немного подробнее объясним, что понимают под этими идеализированными эле­ментами схем. Начнем с индуктивности.

Фиг 221 Индуктивность Индуктивность это навитая в несколько рядов - фото 5

Фиг. 22.1. Индуктивность.

Индуктивность — это навитая в несколько рядов проволока в форме катушки, два конца которой выведены к зажимам на некотором расстоянии от катушки (фиг. 22.1). Предположим, что магнитное поле, создаваемое токами в катушке, не очень рас­пространяется на все пространство и не воздействует на другие части цепи. Обычно этого добиваются, придав катушке форму лепешки или намотав ее на подходящий железный сердечник (это сжимает магнитное поле); можно еще поместить катушку внутрь металлической коробочки: схематически это показано на фиг. 22.1. В любом случае предполагается, что во внешней области у зажимов а и b магнитным полем можно пренебречь. Кроме того, мы будем считать, что электрическое сопротивление проводов в катушке можно не учитывать. И наконец, полагают, что можно пренебречь и электрическим зарядом, возникающим на поверхности провода, когда создаются электрические поля.

С учетом всех этих приближений и возникает то что называют идеальной - фото 6

С учетом всех этих приближений и возникает то, что назы­вают «идеальной» индуктивностью. (Позже мы вернемся к этому пункту и поговорим о том, что бывает в реальных индуктивностях.) Про идеальную индуктивность говорят, что напряжение на ее зажимах равно L(dl/dt). Почему? Когда через индуктив­ность идет ток, то внутри катушки создается магнитное поле, пропорциональное силе тока. Если ток во времени меняется, то меняется и магнитное поле. Вообще говоря, ротор Е равен — dB/dt ; можно сказать и по-другому: контурный интеграл от Е по любому замкнутому пути равен (с минусом) быстроте изме­нения потока В через контур. Представьте теперь себе следую­щий путь: начинается он на зажиме а и тянется вдоль катушки (оставаясь все время внутри провода) к зажиму b ; затем воз­вращается от зажима b к а по воздуху в пространстве вне ка­тушки. Контурный интеграл от Е по этому замкнутому пути можно записать в виде суммы двух частей:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




6a. Электродинамика отзывы


Отзывы читателей о книге 6a. Электродинамика, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x