Ричард Фейнман - 6a. Электродинамика
- Название:6a. Электродинамика
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Фейнман - 6a. Электродинамика краткое содержание
6a. Электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Однако бывают совсем простые схемы, которые этим методом не проанализируешь. Например, схема фиг. 22.13. Чтобы проанализировать эту цепь, надо расписать уравнения для токов и напряжений по правилам Кирхгофа. Давайте проделаем это. Имеется только одно уравнение для токов:
I 1+ I 2+ I 3=0, откуда
I 3=-(I 1+I 2).
Выкладки можно сэкономить, если этот результат сразу же подставить в уравнения для напряжений. В этой схеме таких уравнений два:
-E l + I 2 z 2 -I l z l =0 и Ј 2 -(I l + I 2 )z 3 -I 2z 2=0.
На два уравнения приходится два неизвестных тока. Решая их, получаем 1 1и I 2:
(22.20)
и
(22.21)
А третий ток получается как сумма первых двух.
Вот еще пример цепи, которую по правилам параллельных и последовательных импедансов рассчитывать нельзя
Фиг. 22.14. Мостиковая схема.
(фиг. 22.14). Такую схему называют «мостик». Она встречается во многих приборах, измеряющих импедансы. В таких схемах обычно интересуются таким вопросом:
как должны соотноситься различные импедансы, чтобы ток через импеданс z s был равен нулю? Вам предоставляется право найти те условия, при которых это действительно так,
§ 4. Эквивалентные контуры
Положим, мы подключили генератор Ј к цепи, в которой есть множество сложных переплетений импедансов (схематически это показано на фиг. 22.15, а). Все уравнения, вытекающие из правил Кирхгофа, линейны, и поэтому, вычислив из них ток I через генераторы, мы получим величину I, пропорциональную e. Можно написать
где теперь z эфф— это некоторое комплексное число, алгебраическая функция всех элементов цепи. (Если в цепи нет никаких
генераторов, кроме упомянутого, то в формуле не будет добавочной части, не зависящей от e.) Но получившееся уравнение — это как раз то, которое нужно было бы написать для схемы фиг. 22.15, б. И покуда нас интересует только то, что происходит слева от зажимов а и b , до тех пор обе схемы фиг. 22.15 эквивалентны.
Фиг. 22.15. Любая сеть пассивных элементов с двумя выводами эквивалентна эффективному импедансу.
Фиг. 22.16. Любую сеть с двумя выводами можно заменить генератором, последовательно соединенным с импедансом.
И поэтому можно сделать общее утверждение, что любую цепь пассивных элементов с двумя выводами можно заменить одним-единственным импедансом z эфф не изменив в остальной части цепи ни токов, ни напряжений. Утверждение это, естественно, всего лишь мелкое замечание о том, что следует из правил Кирхгофа, а в конечном счете — из линейности уравнений Максвелла.
Идею эту можно обобщить на схемы, в которые входят как генераторы, так и импедансы. Представьте, что мы глядим на эту схему «с точки зрения» одного из импедансов, который мы обозначим z n(фиг. 22.16, а). Если бы решить уравнение для тока, мы бы увидели, что напряжение V n между зажимами а и b есть линейная функция I, которую можно записать в виде
(22.22)
Здесь А и В зависят от генераторов и импедансов в цепи слева от зажимов. Например, в схеме, показанной на фиг. 22.13, мы находим V 1 =I 1 z l . Это можно переписать [используя (22.20)] в виде
(22.23)
Тогда полное решение мы получаем, комбинируя это уравнение с уравнением для импеданса z 1т. е. с V 1=I 1z 1, или в общем случае комбинируя (22.22) с
Если мы рассмотрим теперь случай, когда z nподключается к простой цепи из последовательно соединенных генератора и импеданса (см. фиг. 22.15, б), то уравнение, соответствующее (22.22), примет вид
что совпадает с (22.22), если принять S эфф=A и z эфф=B. Значит, если нас интересует лишь то, что происходит направо от выводов а и b, то произвольную схему фиг. 22.16 можно всегда заменить эквивалентным сочетанием генератора, последовательно соединенного с импедансом.
§ 5. Энергия
Мы видели, что для создания в индуктивности тока I надо из внешней цепи доставить энергию U= 1/ 2LI 2. Когда ток спадает до нуля, эта энергия уводится обратно во внешнюю цепь.
В идеальной индуктивности механизма потерь энергии нет. Когда через индуктивность течет переменный ток, энергия перетекает то туда, то сюда — от индуктивности к остальной части цепи и обратно, но средняя скорость, с какой энергия передается в цепь, равна нулю. Мы говорим, что индуктивность — недиссипативный элемент, в ней не растрачивается (не «диссипирует») электрическая энергия.
Точно так же возвращается во внешнюю цепь и энергия конденсатора U= 1/ 2СV 2, когда он разряжается. Когда он стоит в цепи переменного тока, то энергия течет то в него, то из него, но полный поток энергии за каждый цикл равен нулю. Идеальный конденсатор — тоже недиссипативный элемент.
Мы знаем, что э. д. с.— это источник энергии. Когда ток I течет в направлении э.д.с., то энергия поставляется во внешнюю цепь со скоростью dU/dt=eI. Если электричество гонят против э.д.с. (с помощью других генераторов), то э. д. с. поглощает энергию со скоростью eI; поскольку I отрицательно, то и dU/dt отрицательно.
Если генератор подключен к сопротивлению R, то ток через сопротивление равен I=e/R. Энергия, поставляемая генератором со скоростью eI, поглощается сопротивлением. Эта энергия тратится на нагрев сопротивления и для электрической энергии цепи фактически уже потеряна. Мы говорим, что электрическая энергия рассеивается, диссипирует в сопротивлении. Скорость, с какой она рассеивается, равна dU/dt=RI 2.
Читать дальшеИнтервал:
Закладка: