LibKing » Книги » sci-phys » Ричард Фейнман - 2a. Пространство. Время. Движение

Ричард Фейнман - 2a. Пространство. Время. Движение

Тут можно читать онлайн Ричард Фейнман - 2a. Пространство. Время. Движение - бесплатно полную версию книги (целиком). Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
libking
  • Название:
    2a. Пространство. Время. Движение
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Ричард Фейнман - 2a. Пространство. Время. Движение краткое содержание

2a. Пространство. Время. Движение - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

2a. Пространство. Время. Движение - читать онлайн бесплатно полную версию (весь текст целиком)

2a. Пространство. Время. Движение - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

х = R cosq, y=Rsinq.

Что можно сказать об ускорении? Чему равна x-составляющая ускорения, d 2 x/dt 2 . Н айти эту величину можно чисто гео­метрически: она равна величине ускорения, умноженной на ко­синус угла проекции; перед полученным выражением надо пос­тавить знак минус, потому что ускорение направлено к центру:

а х =- acosq=-wRcosq=-w 2 0 х. (21.7)

Иными словами, когда частица движется по окружности, гори­зонтальная составляющая движения имеет ускорение, пропор­циональное горизонтальному смещению от центра. Конечно, мы знаем решения для случая движения по окружности: x=Rcos w 0 t. Уравнение (21.7) не содержит радиуса окружности; оно оди­наково при движении по любой окружности при одинаковой w 0.

Таким образом, имеется несколько причин, по которым следует ожидать, что отклонение грузика на пружинке окажется пропор­циональным cosw 0t и движение будет выглядеть так, как если бы мы следили за x-координатой частицы, движущейся по окружно­сти с угловой скоростью w 0. Проверить это можно, поставив опыт, чтобы показать, что движение грузика вверх-вниз на пружинке в точности соответствует движению точки по окружности. На фиг. 21.3 свет дуговой лампы проектирует на экран тени дви­жущихся рядом воткнутой во вращающийся диск иголки и вер­тикально колеблющегося груза.

Фиг 213 Демонстрация эквивалентности простого гармонического движения и - фото 5

Фиг. 21.3. Демонстрация экви­валентности простого гармони­ческого движения и равномерного движения по окружности.

Если вовремя и с нужного места заставить грузик колебаться, а потом осторожно подобрать скорость движения диска так, чтобы частоты их движений сов­пали, тени на экране будут точно следовать одна за другой. Вот еще способ убедиться в том, что, находя численное реше­ние, мы почти вплотную подошли к косинусу.

Здесь можно подчеркнуть, что поскольку математика равно­мерного движения по окружности очень сходна с математикой колебательного движения вверх-вниз, то анализ колебатель­ных движений очень упростится, если представить это движе­ние как проекцию движения по окружности. Иначе говоря, мы можем дополнить уравнение (21.2), казалось бы, совершенно лишним уравнением для у и рассматривать оба уравнения совместно. Проделав это, мы сведем одномерные колебания к движению по окружности, что избавит нас от решения дифферен­циального уравнения. Можно сделать еще один трюк — ввести комплексные числа, но об этом в следующей главе.

§ 4. Начальные условия

Давайте выясним, какой смысл имеют А и В или а и D. Конечно, они показывают, как началось движение. Если движе­ние начнется с малого отклонения, мы получим один тип коле­баний; если слегка растянуть пружинку, а потом ударить по грузику — другой. Постоянные А и В или а и D, или какие-нибудь две другие постоянные определяются обстоятельствами, при которых началось движение, или, как обычно говорят, начальными условиями. Нужно научиться определять постоян­ные, исходя из начальных условий. Хотя для этого можно использовать любое из соотношений (21.6), лучше всего иметь дело с (21.6в). Пусть в начальный момент t=0 грузик смещен от положения равновесия на величину х 0 и имеет скорость v 0 . Это самая общая ситуация, какую только можно придумать. (Нельзя задать начального ускорения, потому что оно зависит от свойств пружины; мы можем распорядиться только величи­ной х 0 .) Вычислим теперь А и В. Начнем с уравнения для

х=Acosw o t+B sin w 0t;

поскольку нам понадобится и скорость, продифференцируем х и получим

v=- w 0Asin w 0t+ w 0Bcos w 0t.

Эти выражения справедливы для всех t, но у нас есть допол­нительные сведения о величинах х и v при t=0. Таким образом, если положить t=0, мы должны получить слева х 0 и v 0 , ибо это то, во что превращаются х и v при t=0. Кроме того, мы знаем, что косинус нуля равен единице, а синус нуля равен нулю. Следовательно,

х 0 · 1+В · 0=А

и

v u =-w 0A·0+ w 0B·1= w 0B.

Таким образом, в этом частном случае

А=х 0 , В=v 0 /w 0 .

Зная А и В, мы можем, если пожелаем, найти а и D.

Итак, задача о движении осциллятора решена, но есть одна интересная вещь, которую надо проверить. Надо выяснить, сохраняется ли энергия. Если нет сил трения, то энергия долж­на сохраняться. Сейчас нам удобно использовать формулы

х=a cos( w ot+D) и v=-w 0asin( w 0t+D).

Давайте найдем кинетическую энергию Т и потенциальную энергию U . Потенциальная энергия в произвольный момент времени равна 1/ 2 kx 2 , где х — смещение, a k — постоянная упругости пружинки. Подставляя вместо х написанное выше выражение, найдем

U= 1 / 2 kx 2 = 1 / 2 ka 2 cos 2( w 0t+D).

Разумеется, потенциальная энергия зависит от времени; она всегда положительна, это тоже понятно: ведь потенциальная энергия — это энергия пружины, а она изменяется вместе с х. Кинетическая энергия равна 1 / 2 mv 2 ; используя выражение для v, получаем

Т = 1 / 2 mv 2 = 1 / 2 mw 2 0 a 2 sin 2 (w 0 t+D ).

Кинетическая энергия равна нулю при максимальном х, ибо в этом случае грузик останавливается; когда же грузик прохо­дит положение равновесия (x=0), то кинетическая энергия до­стигает максимума, потому что именно тогда грузик движется быстрее всего. Изменение кинетической энергии, таким обра­зом, противоположно изменению потенциальной энергии. Пол­ная энергия должна быть постоянной. Действительно, если вспомнить, что k=mw 2 0 , то

T+U= 1/ 2m w 2 0а 2[cos 2( w 0t+D)+sin 2( w 0t+D)] = 1/ 2rn w 2 0a 2.

Энергия зависит от квадрата амплитуды: если увеличить амп­литуду колебания вдвое, то энергия возрастет вчетверо. Средняя потенциальная энергия равна половине максимальной и, сле­довательно, половине полной; средняя кинетическая энергия также равна половине полной энергии.

§ 5. Колебания под действием внешней силы

Нам остается рассмотреть колебания гармонического осцил­лятора под действием внешней силы. Движение в этом случае описывается уравнением

md 2 x/dt 2 =-kx+F(t). (21.8)

Давайте подумаем, как будет вести себя грузик при этих об­стоятельствах. Внешняя движущая сила может зависеть от времени каким угодно образом. Начнем с простейшей зависимо­сти. Предположим, что сила осциллирует

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




2a. Пространство. Время. Движение отзывы


Отзывы читателей о книге 2a. Пространство. Время. Движение, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img