Брайан Грин - Ткань космоса. Пространство, время и текстура реальности
- Название:Ткань космоса. Пространство, время и текстура реальности
- Автор:
- Жанр:
- Издательство:Книжный дом «ЛИБРОКОМ»
- Год:2009
- Город:Москва
- ISBN:978-5-397-00001-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Брайан Грин - Ткань космоса. Пространство, время и текстура реальности краткое содержание
В книге рассматриваются фундаментальные вопросы, касающиеся классической физики, квантовой механики и космологии. Что есть пространство? Почему время имеет направление? Возможно ли путешествие в прошлое? Какую роль играют симметрия и энтропия в эволюции космоса? Что скрывается за тёмной материей? Может ли Вселенная существовать без пространства и времени?
Грин детально рассматривает картину мира Ньютона, идеи Маха, теорию относительности Эйнштейна и анализирует её противоречия с квантовой механикой. В книге обсуждаются проблемы декогеренции и телепортации в квантовой механике. Анализируются многие моменты инфляционной модели Вселенной, первые доли секунды после Большого взрыва, проблема горизонта, образование галактик. Большое внимание уделено новому современному подходу к объяснению картины мира с помощью теории струн/М-теории.
Грин показывает, что наш мир сильно отличается от того, к чему нас приучил здравый смысл. Автор увлекает всех нас, невзирая на уровень образования и научной подготовки, в познавательное путешествие к новым пластам реальности, которые современная физика вскрывает под слоем привычного нам мира.
Ткань космоса. Пространство, время и текстура реальности - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Квантовая механика основывается на уравнении, которое Эрвин Шрёдингер открыл в 1926 г. {91} Вам не нужно знать подробностей об этом уравнении, кроме того факта, что в качестве входных данных в него входит квантово-механическая вероятностная волна в один момент времени, как на рис. 4.5, и оно позволяет определить, как вероятностная волна будет выглядеть в любой другой момент времени, более ранний или более поздний. Если вероятностная волна ассоциируется с частицей, такой как электрон, вы можете использовать её для предсказания вероятности, с которой в заданное время эксперимент обнаружит электрон в заданном месте. Подобно классическим законам Ньютона, Максвелла и Эйнштейна, квантовый закон Шрёдингера включает в себя равноправное рассмотрение будущего и прошлого. «Фильм», показывающий вероятностную волну стартующей в таком виде и заканчивающей в этаком , может быть запущен в обратном направлении, — показывая вероятностную волну, стартующую в этаком виде, а заканчивающую в таком , — и нет способа сказать, что одна эволюция правильна, а другая ложна. В уравнении Шрёдингера оба решения будут верны. Оба одинаково представляют осмысленные пути, по которым возможно развитие. {92}
Конечно, «фильм», о котором идёт речь, очень отличается от аналогов, использованных в предыдущей главе при анализе движения теннисного мяча или разбивающегося яйца. Мы не можем видеть волны вероятности непосредственно; не существует камеры, которая могла бы зафиксировать вероятностные волны на плёнку. Вместо этого мы можем описать вероятностные волны с использованием математических уравнений и представить себе простейшие из таких волн, имеющие форму как на рис. 4.5 и 4.6. Но единственный способ доступа к самим вероятностным волнам является косвенным, через процесс измерения.
То есть, как объяснялось в главе 4 и как видно в рассмотренных выше экспериментах, стандартная формулировка квантовой механики описывает эволюцию с использованием двух совершенно различных стадий. На первом этапе волна вероятности — или, точнее говоря, волновая функция — некоторого объекта, например электрона, эволюционирует в соответствии с уравнением, открытым Шрёдингером. Это уравнение гарантирует, что форма волновой функции изменяется гладко и постепенно, почти как волна на воде, когда она движется от одного берега озера к другому. [49]В стандартном описании второй стадии путём измерения положения электрона реализуется связь электрона с наблюдаемой реальностью, и когда мы это делаем, форма его волновой функции мелется резко и прерывисто. Волновая функция электрона не похожа на более привычные примеры волн на воде или звуковых волн: когда мы измеряем положение электрона, его волновая функция образует пик, т. е. коллапсирует, падая до нуля везде, где частица не найдена, и вырастает до 100%-й вероятности в единственном месте, где частица найдена измерением (как показано на рис. 4.7).
Первая стадия — эволюция волновой функции в соответствии с уравнением Шрёдингера — является математически строгой, совершенно недвусмысленной и полностью принятой физическим сообществом. Вторая стадия — коллапс волновой функции при измерении — наоборот, является чем-то, что на протяжении последних восьмидесяти лет держит физиков, в лучшем случае, в тихом смущении, а в худшем — провоцирует проблемы, загадки и потенциальные парадоксы, ради которых жертвуют карьерами. Трудность, как отмечалось в конце главы 4, состоит в том, что в соответствии с уравнением Шрёдингера волновые функции не коллапсируют. Коллапс волновой функции представляет собой что-то дополнительное. Оно, это дополнение, было введено после открытия Шрёдингером своего уравнения в попытке описать, что же видят экспериментаторы на самом деле. Хотя исходная, несколлапсированная волновая функция воплощает странную идею, что частица находится и тут, и там, экспериментаторы никогда не видят этого. Они всегда обнаруживают частицу определённо в том положении или другом; они никогда не видят её частично тут, а частично там; стрелка в измерительных приборах никогда не витает в состоянии некоторой призрачной смеси, указывая и на эту, и на ту величину.
То же самое происходит, конечно, при наших собственных повседневных наблюдениях окружающего мира. Мы никогда не видели, чтобы стул был и тут, и там; мы никогда не наблюдаем Луну одновременно в одной части ночного неба, а также и в другой; мы никогда не видим кота, который одновременно и жив, и мёртв. Понятие коллапса волновой функции присоединяется к нашему опыту путём постулирования, что акт измерения заставляет волновую функцию отказаться от квантовой неопределённости и сделать одну из множества потенциальных возможностей (частица здесь или частица там) действительной.
Загадка квантового измерения
Но почему проведение измерения экспериментатором заставляет волновую функцию коллапсировать? Фактически, действительно ли коллапс волновой функции происходит, и если он происходит, что реально происходит на микроскопическом уровне? Вызывает ли коллапс любое и всякое измерение? Когда происходит коллапс и как долго длится? Поскольку в соответствии с уравнением Шрёдингера волновая функция не коллапсирует, какое уравнение описывает вторую стадию квантовой эволюции и как это новое уравнение свергает с престола шрёдиигеровское, узурпируя его обычную нерушимую власть над квантовыми процессами? И, что важно в смысле обсуждения стрелы времени, в то время как уравнение Шрёдингера, которое управляет первой стадией, не делает различий между прямым и обратным направлением во времени, не вводит ли уравнение для второго этапа фундаментальную асимметрию между временем до и временем после измерения? То есть, не вводит ли квантовая механика, включая её связь с повседневным миром через измерения и наблюдения , стрелу времени в основные законы физики? В конце концов, мы обсуждали, как квантовая трактовка прошлого отличается от трактовки прошлого в классической физике, и под прошлым мы понимали то, что происходит перед тем, как имеет место определённое квантовое измерение. Поэтому не устанавливают ли измерения, воплощённые в коллапсе волновой функции, асимметрию между прошлым и будущим: между тем, что было до измерения, и тем, что будет после?
Эти вопросы упорно сопротивляются полному решению, и они остаются источником противоречий. Тем не менее спустя десятилетия успехов предсказательную мощь квантовой теории трудно скомпрометировать. Квантовая теория, включающая две стадии эволюции, хотя вторая стадия и остаётся таинственной и непонятной, правильно предсказывает вероятности результатов измерений. И эти предсказания подтверждаются повторением данного эксперимента снова и снова и проверкой частоты, с которой обнаруживаются те или иные результаты. Фантастический экспериментальный успех этого подхода намного перевешивает дискомфорт от отсутствия точного описания того, что на самом деле происходит на второй стадии.
Читать дальшеИнтервал:
Закладка: