Брайан Грин - Брайан Грин. Ткань космоса: Пространство, время и структура реальности
- Название:Брайан Грин. Ткань космоса: Пространство, время и структура реальности
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2004
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Брайан Грин - Брайан Грин. Ткань космоса: Пространство, время и структура реальности краткое содержание
Брайан Грин. Ткань космоса: Пространство, время и структура реальности - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
17. Склонный к математике читатель должен отметить, что в своей сути СТО утверждает, что законы физики должны быть Лоренц-инвариантны, что означает, инвариантны относительно SO(3,1) координатных преобразований пространства Минковского. Отсюда возникает заключение, что квантовая механика будет согласована с СТО, если она может быть сформулирована полностью Лоренц-инвариантным образом. Сейчас релятивистская квантовая механика и релятивистская квантовая теория поля продвинулись далеко в направлении этой цели, но все еще нет полного согласия в отношении того, могут ли они обратиться к квантовой проблеме измерения полностью Лоренц-инвариантным образом. В релятивистской квантовой теории поля, например, можно прямо рассчитать полностью Лоренц-инвариантным образом амплитуды вероятности и вероятность исхода различных экспериментов. Но стандартное рассмотрение спотыкается также при описании способа, при котором тот или иной особый исход возникает из широкого диапазона квантовых возможностей, – то есть, что происходит в процессе измерения. Это особенно важная проблема для запутывания как явления, которое зависит от того, что делает экспериментатор, – акта измерения одного из свойств запутанной частицы. Для более детального обсуждения см. Tim Maudlin, Quantum Non-locality and Relativity (Oxford: Blackwell, 2002).
18. Для склонного к математике читателя приводим квантовомеханический расчет, который дает предсказания в соответствии с этими экспериментами. Предположим, что оси, вдоль которых детектор измеряет спин, суть вертикальная и две наклоненные под 120 градусов по и против часовой стрелки от вертикали (подобно полудню, четырем часам и восьми часам на двух циферблатах часов, одинаковых для каждого детектора, который стоит лицом к лицу с каждым циферблатом), и рассмотрим для определенности два электрона, появляющиеся спина к спине и направляющиеся к этим детекторам в так называемом синглетном состоянии. Поскольку это состояние, в котором полный спин равен нулю, гарантируется, что если один электрон найден в состоянии спин вверх, другой будет найден в состоянии спин вниз относительно заданной оси, и наоборот. (Вспомним, что для упрощения текста я описывал корреляции между электронами как обеспечивающие, что если один имеет спин вверх, такой же будет и другой, и если один имеет спин вниз, второй тоже; на самом деле корреляции таковы, что при них спины ориентируются в противоположных направлениях. Чтобы установить связь с основным текстом, вы всегда должны представлять, что два детектора калиброваны противоположно, так что в ситуации, когда один показывает спин вверх, второй будет показывать спин вниз). Стандартный результат из элементарной квантовой механики показывает, что если угол между осями, вдоль которых наши два детектора измеряют спины электронов, есть θ, тогда вероятность, что будет измерена противоположная величина спина, равна cos 2(θ/2). Таким образом, если оси детекторов выстроены одинаково (θ = 0), они определенно измерят противоположные величины спинов (аналог детекторов в главном тексте, всегда измеряющих одинаковую величину, когда детекторы настроены на одно и то же направление), а если они настроены на направления +120° или –120°, вероятность измерения противоположных спинов есть cos 2(+120° или –120°) = 1/4. Теперь, если оси детекторов выбраны хаотично, 1/3 от времени они будут направлены в одном направлении, а 2/3 не будут. Таким образом, после всех прогонов эксперимента мы ожидаем найти противоположные спины в (1/3)(1) + (2/3)(1/4) = 1/2 от времени, как и подтверждают данные.
Вы можете найти это странным, что предположение о локальности дает более высокую корреляцию спинов (больше 50 процентов), чем когда мы находим ее стандартной квантовой механикой (точно 50 процентов); вы могли подумать, что дальнодействующее запутывание квантовой механики должно давать большую корреляцию. Фактически, оно и дает. Способ подумать об этом таков: при только 50 процентах корреляции всех измерений квантовая механика дает 100 процентов корреляций для измерений, в которых оси левого и правого детекторов выбраны ориентированными в одном и том же направлении. В локальной вселенной Эйнштейна, Подольского и Розена более чем 55 процентов корреляций по всем измерениям требуются, чтобы обеспечить 100 процентное согласие, когда оси выбраны одинаково. Грубо говоря, тогда, в локальной вселенной, 50 процентов корреляций по всем измерениям будут влечь за собой меньше, чем 100 процентов корреляций, когда оси выбраны одинаково, – то есть, меньше корреляций, чем то, что мы нашли в нашей нелокальной квантовой вселенной.
19. Вы можете подумать, что мгновенный коллапс с самого начала нарушил предел скорости, установленный светом и, следовательно, обеспечил конфликт с СТО. И если вероятностные волны были бы на самом деле подобны волнам воды, вы имели бы неопровержимую позицию на этот счет. Тогда то, что величина вероятностной волны вдруг упала бы до нуля на гигантском протяжении, было бы намного более шокирующим, чем если бы вся вода Тихого океана мгновенно прекратила двигаться и стала бы совершенно плоской. Но, утверждают практики квантовой механики, вероятностная волна не похожа на волны воды. Вероятностная волна, хотя она и описывает материю, сама не является материальной вещью. И, продолжают такие практики, барьер скорости света применим только к материальным объектам, вещам, чье движение может быть непосредственно увидено, почувствовано, детектировано. Если вероятностная волна электрона падает до нуля в галактике Андромеда, физик из Андромеды будет просто не способен со 100 процентной определенностью обнаружить этот электрон. Ничто из Андромедских наблюдений не показывает внезапное изменение в вероятностной волне, связанной с успешным детектированием, скажем, электрона в Нью-Йорке. Пока сам электрон не пропутешествует от одного места до другого с большей, чем у света скоростью, конфликта с СТО не будет. И, как вы можете видеть, все, что произошло, это то, что электрон был найден находящимся в Нью-Йорке, а не где-нибудь в другом месте. Его скорость никогда даже не обсуждалась. Так что, хотя мгновенный коллапс вероятности является схемой, которая вызывает загадки и проблемы (более полно обсуждено в Главе 7), нет необходимости предполагать конфликт с СТО.
20. Для обсуждения некоторых из этих предложений, см. Tim Maudlin, Quantum Non-locality and Relativity .
Глава 5
1. Для склонного к математике читателя из уравнения t движущ= γ(t стационарн– (v/с 2)x стационарн), обсужденного в комментарии 9 к Главе 3, мы находим, что список настоящего Шеви в данный момент будет содержать события, которые наблюдатели на Земле будут полагать прошедшими на (v/с 2)x Землранее, где х Землесть расстояние от Шеви до Земли. Это предполагает, что Шеви движется прочь от Земли. Для движения в направлении Земли v имеет противоположный знак, так что связанные с Землей наблюдатели будут полагать, что такие события произойдут на (v/с 2)x Землпозднее. Выбирая v = 10 миль в час и х Земл= 10 10световых лет, находим, что (v/с 2)x Землсоставит около 150 лет.
Читать дальшеИнтервал:
Закладка: