Стивен Вайнберг - Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке

Тут можно читать онлайн Стивен Вайнберг - Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Альпина нон-фикшн, год 2020. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке
  • Автор:
  • Жанр:
  • Издательство:
    Альпина нон-фикшн
  • Год:
    2020
  • Город:
    Москва
  • ISBN:
    9785001392125
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Стивен Вайнберг - Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке краткое содержание

Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке - описание и краткое содержание, автор Стивен Вайнберг, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок.
Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной. При этом ему удается не ограничиваться узкими дисциплинарными рамками и не прятаться от политических тем, среди которых нецелесообразность пилотируемых космических полетов, проблемы социального неравенства и важность поддержки большой науки.
Эта книга издана в рамках программы «Книжные проекты Дмитрия Зимина» и продолжает серию «Библиотека «Династия». Дмитрий Борисович Зимин — основатель компании «Вымпелком» (Beeline), фонда некоммерческих программ «Династия» и фонда «Московское время».
Программа «Книжные проекты Дмитрия Зимина» объединяет три проекта, хорошо знакомые читательской аудитории: издание научно-популярных переводных книг «Библиотека «Династия», издательское направление фонда «Московское время» и премию в области русскоязычной научно-популярной литературы «Просветитель».
Подробную информацию о «Книжных проектах Дмитрия Зимина» вы найдете на сайте
.
Переводчик Сергей Чернин
Научный редактор Дмитрий Баюк
Редактор Антон Никольский
Руководитель проекта И. Серёгина
Корректоры Е. Чудинова, С. Чупахина
Компьютерная верстка А. Фоминов
Дизайн обложки А. Бондаренко
© Steven Weinberg, 2018
© Издание на русском языке, перевод, оформление. ООО «Альпина нон-фикшн», 2020
© Электронное издание. ООО «Альпина Диджитал», 2020 Вайнберг С. Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке / Стивен Вайнберг; Пер. с англ. — М.: Альпина нон-фикшн, 2020.
ISBN 978-5-0013-9212-5

Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке - читать онлайн бесплатно ознакомительный отрывок

Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стивен Вайнберг
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фраза «спасти явления» — это традиционный перевод. Платон же имел в виду, что некоторая комбинация круговых движений должна в точности воспроизвести видимое движение планет по небосводу.

В Афинах эта задачу пытались решить Евдокс, Каллипп и Аристотель, а в Александрии — позднее и с бо́льшим успехом, благодаря эпициклам, — Гиппарх и Птолемей. Задача о движении планет продолжала волновать астрономов и философов исламского и христианского миров вплоть до времен Коперника и даже позже. Конечно, основная сложность в решении задачи Платона возникала из-за того, что Земля и то, что мы теперь называем планетами, обращаются вокруг Солнца, а не Солнце и планеты — вокруг Земли. Движение Земли естественным образом объясняет, почему иногда кажется, что планеты движутся вспять по зодиаку вдоль своего пути. Однако, даже когда Коперник объяснил это явление, он по-прежнему испытывал затруднения при согласовании своей теории с результатами наблюдений, поскольку разделял уверенность Платона в том, что орбиты планет должны состоять из кругов.

Нельзя найти ни одного действительно удовлетворительного решения «домашнего задания» Платона, поскольку на самом деле планеты движутся по эллиптическим орбитам. Это открытие было сделано Кеплером, который еще в молодости, подобно Платону, был очарован пятью правильными многогранниками. Два тысячелетия астрономы и философы были слишком впечатлены красотой симметрии круга и сферы.

Симметрии, с помощью которых в 1950-х гг. было предложено решить проблемы физики элементарных частиц, не были симметриями или инвариантами вещей , пусть даже таких важных, как атомы или орбиты планет. Это были симметрии, представляющие собой принцип инвариантности физических законов .

В современной науке законы природы формулируются в виде математических уравнений, которые точно описывают, что будет происходить в определенных обстоятельствах или при определенных условиях. Первыми физическими законами, сформулированными в таком виде, были законы движения и гравитации Ньютона, которые дали основу для понимания кеплеровской модели Солнечной системы. С самого начала законы Ньютона отвечали различным принципам инвариантности: законы, описывающие наблюдаемые нами проявления движения и гравитации, не изменяют свою форму, если мы переставим время на часах, или изменим точку отсчета расстояний, или повернем нашу измерительную лабораторию [80] По причинам, которые сложно объяснить без привлечения математики, эти симметрии предполагают выполнение важных законов сохранения — сохранения энергии, импульса и момента импульса (или спина). Некоторые другие симметрии подразумевают сохранение других величин, например электрического заряда. .

Есть еще одна, менее очевидная, симметрия, названная принципом относительности Галилея. Ее существование было предсказано в XIV в. Жаном Буриданом и Николаем Оремом: открываемые нами законы природы не изменяют своей формы, если мы проводим наши наблюдения в лаборатории, движущейся с постоянной скоростью.

Ньютон и его последователи приняли эти принципы инвариантности во многом как данность и использовали их как безусловное основание для своих теорий, поэтому ситуация, когда эти принципы сами по себе стали предметом для серьезных научных исследований, оказалась довольно болезненной. Суть СТО, предложенной Эйнштейном в 1905 г., состояла в уточнении принципа относительности Галилея. Ее разработка была мотивирована отчасти неудачными попытками физиков обнаружить какое-либо влияние движения Земли на измеряемую скорость света, подобное влиянию движения лодки на наблюдаемую скорость волн на поверхности воды. В СТО, как и в ньютоновской механике, помещение наблюдателя в движущуюся с постоянной скоростью лабораторию не изменяет форму наблюдаемых физических законов, однако влияние движения на измеряемые расстояния и временны́е интервалы, описываемое СТО, отличается от представлений Ньютона. Движение приводит к сокращению длины и замедлению времени так, чтобы скорость света оставалась постоянной независимо от скорости движения наблюдателя. Эта новая симметрия, названная принципом относительности Лоренца ( лоренц-ковариантностью ), требует значительных отклонений от ньютоновской физики, в том числе от закона преобразования энергии и массы [81] Лоренц пытался объяснить неизменность наблюдаемой скорости света, изучая влияние движения на частицы материи. Эйнштейн же, наоборот, объяснял те же результаты наблюдений изменением одной из фундаментальных симметрий природы. .

Появление СТО и ее успех дали физикам XX в. сигнал о важности принципов симметрии. Однако сами по себе симметрии пространства и времени, встроенные в СТО, не позволят нам продвинуться слишком далеко. Можно представить огромное множество теорий частиц и сил, согласующихся с указанными пространственно-временными симметриями. К счастью, уже в 1950-х гг. было ясно, что физические законы, какими бы они не были, отвечают симметриям всех других типов, как и пространственно-временным.

Еще с 1930-х гг. было известно, что неоткрытые законы сильного ядерного взаимодействия учитывают симметрию протонов и нейтронов — двух частиц, из которых состоит атомное ядро. Это означает, что уравнения, описывающие сильное взаимодействие, не изменяются не только при замене протонов на нейтроны и нейтронов на протоны. Форма уравнений сохраняется даже при замене протонов и нейтронов на частицы, соответствующие суперпозиции этих двух: например, каждый протон в уравнениях можно заменить на частицу, которая, скажем, с 60 %-ной вероятностью может оказаться протоном, а с 40 %-ной — нейтроном, а каждый нейтрон можно заменить частицей, которая с 40 %-ной вероятностью — протон, и с 60 %-ной — нейтрон. Вследствие этой симметрии сила, действующая между двумя протонами, равна не только силе между двумя нейтронами, она также равна силе, действующей между протоном и нейтроном. (Эта группа инвариантности математически тождественна группе движений сферы.)

Позже, в 1960-х гг., когда новых типов частиц, открытых учеными, становилось все больше, выяснилось, что описанная протон-нейтронная симметрия является частью еще большей группы симметрии, которую назвали « восьмеричный путь ». В этой большой группе симметричны друг другу не только протоны и нейтроны, но и еще шесть других частиц под названием «гипероны». Все частицы, участвующие в сильном ядерном взаимодействии, попадают в одинаковые семейства, состоящие из восьми, десяти и более членов.

Однако в существовании таких внутренних симметрий было нечто странное: в отличие от симметрий в пространстве и времени, эти новые симметрии были не совсем точными. Электромагнитные явления не согласуются с этими симметриями; протоны и некоторые гипероны имеют электрический заряд, тогда как нейтроны и другие гипероны — нет. Кроме того, массы протонов и нейтронов отличаются примерно на 0,14 %, а масса самого легкого гиперона отличается от массы протонов и нейтронов на 19 %. Если законы симметрии являют собой простоту природы на глубинном уровне, как быть с симметрией, которая применима только к некоторым силам, да и то приближенно?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стивен Вайнберг читать все книги автора по порядку

Стивен Вайнберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке отзывы


Отзывы читателей о книге Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке, автор: Стивен Вайнберг. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x