Эрик Асфог - Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба
- Название:Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2021
- Город:Москва
- ISBN:9785001395072
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрик Асфог - Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба краткое содержание
В книге «Когда у Земли было две Луны» известный планетолог Эрик Асфог отправляет нас в захватывающее путешествие в самые далекие времена нашей Галактики, чтобы выяснить, почему Луна такая разная. Интересно написанная, с провокационными аргументами, эта книга – не только головокружительный астрономический тур, но и глубокое исследование происхождения жизни в миллиардах километрах от нашего дома.
Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Астероид Ультима Туле (официально – Аррокот или 2014 MU69) – самое далекое тело, которое когда-либо посещал наш космический аппарат. Этот первичный объект длиной 31 км, находящийся в 1 млрд километров за орбитой Плутона, – контактно-двойное тело, сформировавшееся в результате наиболее ранней аккреции или, возможно, повторной аккреции после медленного столкновения.
NASA/JHUAPL/SwRI
Один из самых интересных из известных нам объектов пояса Койпера – это быстро вращающаяся вокруг своей оси Хаумеа, рядом с которой уже обнаружены два спутника, Хииака и Намака. Хаумеа движется вокруг Солнца по орбите, напоминающей орбиту Плутона. Она вращается вокруг своей оси так быстро (один оборот за 3,9 часа), что приняла форму вытянутого сфероида с поперечником в почти 2000 км. По скорости вращения она опережает любое тело Солнечной системы диаметром больше 100 км. Длинная ось Хаумеи почти равна диаметру Плутона, но короткая ось в два раза короче. Несмотря на то что площадь ее поверхности гораздо меньше, чем у Плутона или Эриды, Хаумеа – самый яркий транснептуновый объект, поскольку бела, как снег. А если всего этого недостаточно, чтобы разбудить ваше любопытство, она еще и окружена кольцом обломков. Больше того, она динамически связана с десятком других, более мелких объектов пояса Койпера, которые так же ярки и имеют тот же богатый водяным льдом состав поверхности – судя по всему, это бесспорное доказательство того, что все они возникли в результате некоего гигантского столкновения [185].
Никакой даже общий разговор о Плутоне невозможен без обсуждения, что такое планета. В 2006 г. Международный астрономический союз (МАС) принял резолюцию следующего содержания (я слегка перефразирую): «Планета – небесное тело, обращающееся по орбите вокруг звезды, достаточно массивное, чтобы преодолеть сопротивление твердого тела деформациям и стать округлым под действием собственной гравитации, а также сумевшее расчистить окрестности своей орбиты». Карликовая планета «отвечает всем вышеперечисленным критериям, но не расчистила окрестности своей орбиты». Вроде звучит достаточно логично, но так ли это? Во-первых, тут нужно внести поправку, чтобы исключить звезды, обращающиеся вокруг других звезд; они планетами не являются. Как другую крайность мы должны исключить пузырь воды, плавающий внутри космического корабля, поскольку карликовой планетой его не назовешь. Достаточно справедливо, но как насчет Плутона? Гравитация сделала его практически сферой, то есть с этим пунктом все хорошо. Также на его поверхности очень мало ударных кратеров, что говорит о высокой геологической активности.
Тут возникает первая проблема. Вы заметили, что в определении МАС ничего не говорится о геологии, тогда как с геологической точки зрения Плутон – это планета [186]. Другим недостатком этого определения является обозначение непланет как «карликовых планет», потому что различия тут никак не связаны с размером космического тела. Плутон относят к карликовым планетам, потому что он динамически привязан к Нептуну. Если придерживаться определения МАС, то, когда мы обнаружим примерно равную по массе Земле планету, обращающуюся в обитаемой зоне вокруг иной звезды и имеющую на поверхности жидкую воду, но находящуюся под гравитационным влиянием некого супер-Юпитера, нам придется назвать ее карликовой планетой. Это будет просто глупо.
В конце 1980-х гг. астрономы много интересовались Плутоном из-за как раз завершившейся серии его взаимных затмений со спутником Хароном. (Никаких изображений этого события у нас не было: и Плутон, и Харон оставались лишь точками света.) К этому времени были точно установлены их орбиты и массы, а благодаря затмениям также и диаметры. Появилась возможность высчитать объемную плотность Плутона – 1,9 г/см 3, на полпути между горной породой и льдом, чуть меньше, чем у немного более крупного Тритона, который мы посетили во время пролета «Вояджера-2» мимо спутников Нептуна в 1989 г. Полученные с помощью телескопов данные об этих затмениях были использованы для создания первых грубых геологических карт Плутона и Харона; оглядываясь назад, мы понимаем, что примерно так будут выглядеть первые изображения первой найденной нами землеподобной экзопланеты. Применив метод наименьших квадратов, астрономы нарисовали что-то вроде цветной карты [187], которая без сомнений демонстрировала, что Плутон имеет разнообразную геологию, соответствующую долгой и, возможно, продолжающейся до сих пор эволюции поверхности.

Область Томбо, названная в честь первооткрывателя Плутона, и прилегающая к ней Равнина Спутника вместе образуют яркое сердце на поверхности Плутона. Харон (сзади слева) темнее, поскольку принял органические углеродсодержащие молекулы из атмосферы более крупной планеты. Составлено из изображений, полученных обзорной фотокамерой аппарата «Новые горизонты».
NASA/JHUAPL/SwRI
Во всем этом есть динамическая загадка. Орбита Плутона имеет настолько большой эксцентриситет, что 1/12 своего года (который составляет 248 земных лет) он проводит внутри орбиты Нептуна. Можно подумать, что планеты с пересекающимися орбитами рано или поздно столкнутся, но в случае с Нептуном и Плутоном имеет место резонанс 3:2, так что Плутон пересекает орбиту соседа, только когда Нептун находится далеко впереди или далеко позади. Почему планета диаметром 2300 км, вокруг которой обращается спутник в два раза меньшего размера, находится на сильно наклоненной и вытянутой орбите вокруг Солнца в стабильном орбитальном резонансе с Нептуном? Планеты размером с Плутон могут формироваться только в средней плоскости протопланетного диска, потому что именно там находится все вещество, так что Плутон после своего образования был каким-то образом сбит с первоначальной орбиты.
Первой мыслью было объяснить это «гравитационной пращей», в которую попал массивный объект пояса Койпера, близко подошедший к Нептуну. Другая идея состояла в том, что Плутон ушел с орбиты вокруг Нептуна и является родным братом Тритона, который имеет практически ту же массу и обращается вокруг Нептуна в обратную сторону, против направления вращения планеты. Определенно, чтобы объяснить необычное попятное движение Тритона, должно было произойти что-то странное [188]. Но оба этих сценария – сбежавший спутник или скользящее сближение с Нептуном – динамически невозможны. Перейти с орбиты, которая приводит к встрече с Нептуном, на ту, которая заведомо исключает сближение с Нептуном, – это все равно что в биллиарде сделать удачный дуплет с неправильного конца стола. Если использовать язык динамики, эти орбиты находятся по разные стороны сепаратрисы .
Читать дальшеИнтервал:
Закладка: