Эрик Асфог - Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба
- Название:Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2021
- Город:Москва
- ISBN:9785001395072
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрик Асфог - Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба краткое содержание
В книге «Когда у Земли было две Луны» известный планетолог Эрик Асфог отправляет нас в захватывающее путешествие в самые далекие времена нашей Галактики, чтобы выяснить, почему Луна такая разная. Интересно написанная, с провокационными аргументами, эта книга – не только головокружительный астрономический тур, но и глубокое исследование происхождения жизни в миллиардах километрах от нашего дома.
Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Но что, если мы обнаружим на Марсе нечто очень необычное и совершенно незнакомое : окаменевшую жизненную форму или даже живой организм, про который мы сможем с уверенностью сказать, что он никоим образом не связан с Землей и восходит к иному моменту зарождения жизни, иному «акту творения»? Не знаю, как мы сумеем это строго доказать, но подобная находка будет намекать, что жизнь во Вселенной может возникать повсюду, где есть условия, подобные земным, внутри некоего диапазона между предельными значениями. Но если жизнь зарождается повсюду, то, возможно, с тем же успехом – и даже гораздо легче – мы найдем свидетельства «первого творения» прямо здесь, на Земле, где такие организмы могли быть вытеснены после нашего «второго творения», как Homo sapiens вытеснили неандертальцев. На Земле даже могла существовать своя аборигенная жизнь, развитию которой помешала панспермия с Марса; тогда мы с вами являемся марсианскими агрессорами.
Глава 4
Странности и мелочи
Чем ближе планетезималь к Солнцу, тем больше ее орбитальная скорость. Это закон Кеплера. Таким образом, если вы болтаетесь на расстоянии 1 а.е. от Солнца – там, где зародилась Земля, – то более близкая к звезде планетезималь будет вас обгонять, а более дальняя – отстанет. Могут ли эти движущиеся с разной скоростью планетезимали нагнать друг друга, чтобы под действием силы притяжения соединиться и создать планету? Да, если их взаимная гравитация достаточно велика. Но если кеплеровское усилие сдвига – склонность планетезималей на соседних орбитах обращаться с разными скоростями – больше, то этот регион останется без планеты. Согласно уравнению коагуляции Смолуховского, выведенному путем сравнения гравитации и усилия сдвига, протопланетный диск на расстоянии 1 а.е. от звезды солнечного типа может породить планету в десять раз массивнее Земли, но планета, имеющая одну земную массу, будет разорвана быстрее, чем сможет вырасти.
Однако, прежде чем мы хотя бы приступим к решению этой проблемы, нам еще нужно преодолеть «барьер метровых размеров». Расчеты показывают, что достигшая размера небольшого автомобиля планетезималь за несколько десятков лет рухнет по спирали на Солнце. Получается замкнутый круг: если вокруг достаточно пыли, чтобы она могла собраться в планетезималь, то хватает и газа, который тащит планетезимали к Солнцу, когда они образуются. (Это та же самая сила сопротивления, которая заставляет вас замедлять шаг, когда ветер дует в лицо, а низкоорбитальные космические аппараты – по спирали приближаться к Земле.) Но если все планетезимали по спирали упали на Солнце, то почему же на свете есть планеты? Нами описаны десятки планетных систем, еще сотни ждут повторных наблюдений, а всего подтверждено существование примерно 4000 планет, так что их образование происходит достаточно часто.
Кажется, решение состоит в том, что, собираясь в рои, планетезимали меняют динамику и газа, и друг друга, что заставляет их сближаться и сливаться воедино. Одна-единственная частица действительно упадет на звезду по спирали, как свидетельствуют теоретические выкладки, но вот в чем загвоздка: такой штуки, как одна-единственная частица, не существует. Вместо этого миллионы частиц взаимодействуют друг с другом, вызывая в газе круговороты и завихрения, в результате чего к ним притягиваются другие частицы, подобно велосипедистам в пелотоне. Скопления, возникающие в результате, – первичные груды щебня – рассеивают энергию при столкновениях, окутывая новичков, примерно как кресло-мешок – садящегося в него человека. Новые частицы гравия, которые ударяются в них, прилипают. Так что вместо того, чтобы мешать аккреции, сопротивление газа помогает планетезималям расти. Они не просто выживают в условиях такого встречного ветра, но и накапливают все больше и больше материала.
Этот процесс назвали «гравийной аккрецией», и, если она действительно существует, тогда (согласно моделям) можно ожидать, что примитивные кометы и астероиды будут состоять из первичных компонентов размером от одного сантиметра до метра. Так что считать таким гравием? Некоторые убеждены, что на эту роль подходят хондры – сферы размером с песчинку, которыми полны ранние метеориты. Хондры в основном затвердевали как капли расплавленного силикатного вещества, причем большинство из них сформировалось в период от полумиллиона до двух миллионов лет после появления самых древних твердых тел – то есть по сути немного припозднились. Мне кажется, что с большей вероятностью хондры – это побочный продукт аккреции планетезималей [182], а не то, что послужило им началом. К тому же типичная хондра размером с мелкий бисер слишком мала, чтобы быть предсказанным теорией «гравием». Другие ученые придерживаются мнения, что этот гравий виден на фотографиях, сделанных космическими аппаратами при сближении с кометами и астероидами, такими как комета 67P/Чурюмова – Герасименко [183], на орбиту которой выходила автоматическая станция ESA «Розетта». На этих снимках видна бугристая фактура стенок свежих выемок и обнажений, напоминающая груды метровых грейпфрутов. Астероид Бенну диаметром 500 м, ставший объектом изучения экспедиции OSIRIS-REx, также имеет поверхность [184]с «крупицами» метрового размера, которые, возможно, слабо сцеплены друг с другом; однако пока на Землю не доставлены образцы, мы не можем в точности знать, чем они являются.
Проблема гравия была бы куда проще, если бы у природы не имелось множества способов создавать такие булыжные мостовые. Ударная нагрузка ломает горные породы, но не на куски одинакового размера. Тепловое расширение и сжатие может дробить камень, и то же самое может делать быстрое выделение газов или переход льда и минералов из одной твердой фазы в другую. Процессы формирования гранул могут быть особенно распространены на кометах и примитивных астероидах, которые вошли во внутреннюю часть Солнечной системы, где их только и можно исследовать с помощью космических аппаратов. Мощное солнечное излучение в новинку кометам, так что бугры размером с мяч для йоги на поверхности 67P могут быть реакцией на разогрев или вакуум и не иметь никакого отношения к аккреции.
В нашем понимании процесса аккреции малых тел есть пробелы, и то же самое можно сказать о нашем понимании процесса аккреции крупных тел. Если бы не экспедиции, доставившие с Луны большое количество разнообразных образцов, у нас бы не было теперь уже неопровержимых геологических доказательств того, что наш спутник сформировался в результате гигантского столкновения на поздней стадии. Это оказалось тем самым ключом, который подошел к замку. Да, аккреция началась с планетезималей, но она длилась до самого слияния отца Земли и матери Тейи.
Читать дальшеИнтервал:
Закладка: