Алексей Семихатов - Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей
- Название:Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2022
- Город:Москва
- ISBN:9785001398035
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алексей Семихатов - Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей краткое содержание
Привычные способы описания вещей рушатся. Неизбывная вражда, определяемая наличием постоянной Планка, составляет неотъемлемую часть устройства Вселенной. Такое положение дел влияет не только на то, что понимается под движением объектов, но в некоторой степени и на сам характер их существования. Награды и премии Вошла в длинный список XV сезона премии Дмитрия Зимина «Просветитель».
В книге обсуждаются функционирование Солнечной системы и возможности путешествий по ней; взаимоотношения пространства, времени и движения в специальной теории относительности и определяемые ими проблемы галактических перелетов; общая теория относительности и ее эффекты, включая некеплеровы орбиты, замедление времени, гравитационные волны и экзотические способы сверхсветового перемещения; энтропия как незнание о микроскопическом движении и ее приложения от тепловых машин до демона Максвелла и черных дыр; квантовая механика, включая прохождение сквозь стены, уникальность устройства атомов, запутанность и интерпретации, призванные прояснить состояние кошки Шрёдингера. По правилам нашей Вселенной в ней невозможен покой, и читателю предстоит оценить ее беспокойное разнообразие.
Мир, где властвует принцип неопределенности, казалось бы, должен выглядеть размытым и неточным, но в действительности все наоборот: мир оказывается чрезвычайно жестким и строгим, а потому точным в отношении тех значений величин, которые все-таки доступны существующим там явлениям. …Перед нами еще один случай, когда отличие времени от пространства вносит свои поправки, и в пространстве-времени обстоятельства поворачиваются таким образом, что самые прямые линии, соединяющие два события, – это самые долгие путешествия для путешествующих. Для кого Для тех, кому хочется найти ориентиры для понимания современной научной картины мира, ее принципов и закономерностей развития.
Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Рис. 2.7.Земля и Юпитер, если бы они могли оказаться рядом
Раз оказавшись вблизи L 4или L 5в системе Солнце – планета, астероиды имеют тенденцию там и оставаться. Сильнее всего этот эффект проявляется, разумеется, в самой гравитационно сильной паре тел в Солнечной системе. Это Солнце и Юпитер (который в 317 раз массивнее Земли; рис. 2.7). В точках Лагранжа L 4и L 5системы Солнце – Юпитер собралось, по оценкам, около 1 млн астероидов, превышающих 1 км в диаметре (возможно, примерно столько же, сколько их в поясе астероидов между Марсом и Юпитером). Они названы именами участников Троянской войны и даже разбиты по лагерям:
L 4. Это лагерь греков. Застрявшие там астероиды носят, в частности, имена (начиная с тех, которые должны звучать хоть сколько-нибудь знакомо, если никуда не подглядывать): Ахилл, Нестор, Агамемнон, Одиссей, Аякс, Менелай, Филоктет, Неоптолем; а еще – Идоменей, Протесилай, Талфибий, Менесфей, Подалирий и многие другие. Но там же и Гектор – астероид, названный именем жителя Трои еще до того, как пробила себе дорогу идея номенклатурного разделения этих небесных тел на два враждующих лагеря, между которыми лежит треть орбиты Юпитера (больше полутора миллиардов километров).
L 5. Здесь совсем другая картина – это лагерь защитников Трои. Среди прочих тут обитают Приам, Эней, Главк, Сарпедон, Лаокоон, Парис, если снова начинать со знакомо звучащих имен, а кроме того, Алкафой, Пандар, Пулидам, Ифидам, Сергест, Астеропей и еще многие. Единство защитников Илиона тоже нарушено, еще до появления коня: к ним присоединился Патрокл.

Рис. 2.8.Греки и троянцы по две стороны от Юпитера. Их разделяет расстояние, равное примерно десяти расстояниям от Земли до Солнца. Ближе к Солнцу, внутри орбиты Юпитера находится главный пояс астероидов
Гектор и Патрокл.Пребывание Гектора и Патрокла в «чужих» станах в парадоксальном смысле логично: именно Гектор убил Патрокла («Нет великого Патрокла! Жив презрительный Терсит!»), и только поэтому Ахилл вернулся на поле боя – где и сразил Гектора [36] У Жуковского, переводившего поэму Шиллера, «презрительный» означает «презренный» или «презираемый»: Скольких бодрых жизнь поблекла! Скольких низких рок щадит! Нет великого Патрокла! Жив презрительный Терсит!
.
Разумеется, ни греки, ни троянцы не сосредоточены все в одной точке, а занимают некоторый участок вдоль траектории Юпитера. Происходит все это довольно далеко от Земли (рис. 2.8), поэтому открыты они были совсем не сразу. Слово «троянцы» используют также в отношении астероидов, скапливающихся вблизи точек L 4и L 5других пар Солнце – планета; поскольку Солнце – это всегда Солнце, говорят просто о троянцах, например, Нептуна или Сатурна. Слово относится и к опережающим, и к отстающим; одного эпизода Троянской войны на Солнечную систему достаточно.
Полет из пращи. Путешествия к астероидам и планетам – это относительно далекие путешествия, оказывающиеся долгими при доступных нам скоростях. Разогнаться быстрее нелегко: топлива хватает только на что-то вроде TLI – единовременный разгон при старте с околоземной орбиты; хорошо, если потом остается еще немного на маневры. Дефицит топлива определяется трудностью его доставки к месту использования. Реактивная тяга основана на том, что, выбрасывая что-то «назад», реактивный аппарат движется «вперед»; здесь важна скорость, с которой некоторый «агент» выбрасывается назад (в подавляющем большинстве реально существующих реактивных двигателей это горячий газ). Реактивный аппарат несет с собой источник энергии для этого «выбрасывания» – в современных ракетах это горючее (например, керосин или метан) и окислитель. Их соединение обеспечивает горение, при котором и выделяется энергия. И вот здесь скрыт ключевой момент: необходимость с самого старта нести с собой все топливо (горючее и окислитель), в том числе и тот запас, который понадобится на более поздних этапах полета. Не только «полезную нагрузку», но и это топливо необходимо разогнать на более ранних этапах движения, а для этого разгона требуется дополнительное топливо, которое, в свою очередь, необходимо разогнать, для чего нужно еще сколько-то топлива, и так далее. Это удручающее положение дел математически выражается формулой Циолковского – соотношением, которое на основе законов движения Ньютона говорит, какой должна быть стартовая масса ракеты, чтобы разогнать желаемую «полезную» массу до заданной скорости, выбрасывая продукты горения с заданной скоростью относительно ракеты. Удручающим здесь является характер этой зависимости: увеличение конечной скорости достигается колоссальным увеличением массы ракеты – т. е. количества топлива – при старте.
Формула Циолковского не очень оптимистична
Но пока наши топливные возможности существенно ограничены, в дальнем путешествии можно заметно увеличить скорость, отобрав совсем ничтожную часть количества движения у встреченной по дороге планеты. Для этого действия иногда употребляют звучное название «гравитационная праща» (есть и более технический термин: «гравитационный маневр»). Это остроумный способ извлечения пользы – разгона или, когда это нужно, торможения – из совместной игры гравитации и движения [37] Идея об использовании попутных тел – например, спутников планет – для ускорения в дальних перелетах принадлежит пионеру космонавтики Ю. В. Кондратюку (под этим именем с 1921 г. жил А. И. Шаргей): он описал ее среди прочего в своей рукописи «Тем, кто будет читать, чтобы строить», написанной, вероятно, около 1919 г., но ставшей известной значительно позже.
. Первым космическим аппаратом, исполнившим гравитационную пращу, была «Луна-3», полетевшая в космос в 1959 г. как «Автоматическая межпланетная станция». Она не только впервые выполнила этот маневр, но и впервые сфотографировала обратную сторону Луны, что вызвало колоссальный интерес и было огромным достижением, несмотря на никудышное по современным стандартам качество успешно присланных 17 (из 29 сделанных) фотографий. Пытаясь представить себе ощущение чуда от первого за всю историю человечества взгляда на то, чего увидеть «нельзя», я думаю, что качество фотографий было не самым главным в общественном восприятии этого события. (Первыми же людьми, посмотревшими на обратную сторону Луны своими глазами, был экипаж «Аполлона-8».) Луна направила станцию обратно к Земле, а из-за движения самой Луны при встрече изменилась плоскость орбиты станции: она повернулась примерно вокруг линии Земля – Луна, проведенной в момент облета Луны (рис. 2.9). «Луна-3» ушла от Луны таким образом, чтобы при возвращении к Земле пролететь над Северным полушарием и передать фотографии на станции связи на территории СССР (что оказалось непросто из-за слабости сигнала). Она вообще не имела маршевого двигателя, и весь этот полет требовалось рассчитать заранее (расчетами по Ньютону занималась команда под руководством Келдыша).
Интервал:
Закладка: