Иосиф Шкловский - Звезды: их рождение, жизнь и смерть
- Название:Звезды: их рождение, жизнь и смерть
- Автор:
- Жанр:
- Издательство:Наука, Главная редакция физико-математической литературы
- Год:неизвестен
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Иосиф Шкловский - Звезды: их рождение, жизнь и смерть краткое содержание
Книга посвящена центральной проблеме астрономии — физике звезд. Заключительный этап звездной эволюции представляет особенно большой интерес, так как он имеет прямое отношение к таким интереснейшим объектам современной астрономии, как пульсары, рентгеновские звезды и черные дыры. Проблемы, связанные с этими объектами, пока далеки от решения. Поэтому автор стремился осветить фактическое состояние вопроса, давая лишь общее представление о существующих: теориях и гипотезах. В книге рассматривается также проблема образования звезд.
Книга рассчитана на широкий круг лиц со средним образованием. Специальный интерес она представляет для студентов, лекторов, преподавателей, специалистов в области смежных наук.
Звезды: их рождение, жизнь и смерть - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Взрывы звезд имеют важное значение для физики и динамики межзвездной среды. Это огромное возмущение распространяется вначале с очень большой скоростью, которая постепенно уменьшается. Зона взрыва за несколько десятков тысяч лет распространяется на гигантскую область межзвездной среды, размеры которой исчисляются десятками парсек. В этой зоне физические условия резко отличаются от «невозмущенных». В ней существует весьма горячая плазма, нагретая до температуры в несколько миллионов кельвинов. Плотность космических лучей и напряженность магнитного поля в области, охваченной таким большим возмущением, значительно больше среднего значения, рассеиваясь в окружающей межзвездной среде, такое возмущение «обогащает» ее космическими лучами и вносит изменение в химический состав межзвездного газа.
Мы уже видели в § 16, что химический состав быстро движущихся волокон Кассиопеи А резко отличается от «обычного». Уже один этот наблюдательный факт говорит о том, что взрыв звезды является как бы «плавильным тиглем», в котором осуществляется «варка» сложных ядер. Следовательно, взрывы сверхновых звезд, выражаясь языком металлургов, осуществляют процесс «флотации» (обогащения) межзвездной среды тяжелыми ядрами.
Излишне подчеркивать, к каким необозримой важности последствиям приводит этот неуклонно действующий процесс. Ведь в «юности», еще до того как образовались галактики и звезды, Вселенная представляла собой довольно простую водородно-гелиевую плазму, возможно, с небольшой примесью дейтерия. Тяжелых ядер тогда еще не было. Это нашло свое отражение в химическом составе старейшего поколения звезд — субкарликов (см. § 12). В этой связи следует заметить, что основное обогащение межзвездной среды тяжелыми элементами произошло на самых ранних стадиях образования галактик. Тогда образовалось одновременно с нынешними субкарликами большое количество массивных и сверхмассивных звезд первого поколения, которые после десятка миллионов лет эволюции взрывались как сверхновые. Частота вспышек последних была в десятки раз больше, чем сейчас. По этой причине процесс обогащения межзвездной среды тяжелыми элементами в основном закончился довольно быстро, за «какие-нибудь» несколько сотен миллионов лет самой ранней истории нашей Галактики (а также, конечно, и других галактик) [ 43 ] Исключение, по-видимому, представляет процесс обогащения железом при вспышках сверхновых I типа (см. ниже).
.
Естественно спросить, а откуда известны эти важные детали «химической истории» нашей звездной системы? Оказывается, что эта летопись записана в метеоритах и земной коре. Тонкий химический анализ позволяет найти отношение концентраций радиоактивных изотопов 238U (уран-238), 244Рl (плутоний-244), 235Th (торий-235), а также двух изотопов йода — 127I и 129 I . Так как периоды полураспада у ядер этих изотопов достаточно хорошо известны, то по измеренной относительной концентрации можно получить возрасты ядер. В частности, из измеренного отношения концентрации [Pl]/[U] в образцах метеоритов следует, что эти сверхтяжелые ядра образовались 8,5—10 миллиардов лет назад, причем они образовались за сравнительно короткое время.
Очень интересные результаты получаются из анализа концентрации изотопов йода и находящегося в метеоритах тяжелого инертного газа ксенона, являющегося стабильным продуктом распада радиоактивного изотопа 127I. Этот анализ показывает, что возраст изотопов йода значительно (примерно вдвое) меньше возраста изотопов урана, плутония и тория. В противном случае сравнительно короткоживущий изотоп 127I не сохранился бы. С другой стороны, из анализа содержания ксенона в образцах метеоритов следует, что уже через 180 миллионов лет после своего образования изотопы йода вошли в состав кристаллического вещества метеоритов. Так как не подлежит сомнению, что метеориты образовались одновременно с Солнечной системой (около 5 миллиардов лет назад), то можно сделать вывод, что вещество, из которого образовалась эта система, было обогащено незадолго до этого вспыхнувшей сверхновой. Заметим еще, что недавно обнаруженные различия в химическом составе у облаков межзвездной среды (см. § 2) естественно объясняются влиянием вспышек сверхновых.
После нашего небольшого экскурса в увлекательную область химической истории Галактики мы возвращаемся к основному вопросу о причинах взрывов звезд, наблюдаемых как феномен сверхновых. Изучение остатков таких вспышек открывает возможность оценить некоторые важные параметры взрывов, без знания которых научное рассмотрение этой проблемы было бы невозможно. К числу таких параметров относятся масса выброшенной при взрыве оболочки, кинетическая энергия этой оболочки и ее химический состав, наличие огромного количества релятивистских частиц в остатках взрыва и их энергетический спектр. Кроме того, исследования вспышек сверхновых в других галактиках методами современной астрономии (в частности, спектроскопии) позволяют определить полное количество излученной энергии, этой важнейшей характеристики взрыва. Эти же наблюдения дают возможность определить первоначальную скорость выброшенных при взрыве газов, что позволяет оценить «удельную энергию» взрыва, т. е. количество энергии, приходящееся на грамм вещества.
Прежде всего следует подчеркнуть, что настоящей теорией взрыва звезд современная наука пока еще не располагает. Эта проблема, как и можно было ожидать, оказалась очень трудной. Все же положение не следует признавать таким уж безнадежно плохим. Ряд узловых вопросов будущей теории уже в определенной степени разработан, а главное,— поняты, правда, в довольно общей форме, те физические условия в эволюционирующей звезде, которые, закономерно меняясь, должны с неизбежностью привести к космической катастрофе.
Переходя к существующим теоретическим представлениям, касающимся причины взрыва звезд, прежде всего остановимся на возможных источниках энергии. Естественнее всего считать, что таким источником является ядерная энергия.
Мы уже довольно подробно рассматривали этот источник для объяснения «спокойного» излучения звезд во время их пребывания на главной последовательности (см. § 8). Там же подчеркивалось, что после «исчерпания» водородного ядерного горючего в центральных областях звезды характер ее эволюции значительно усложняется. Равновесное состояние звезды на конечной стадии ее эволюции зависит от первоначальной массы, которая предполагается неизменной на протяжении всей эволюции. Последнее предположение, однако, как мы уже раньше видели в § 13, заведомо не выполняется. Например, на стадии красного гиганта у реальных звезд наружные слои отделяются, а из внутренних образуется белый карлик.
Читать дальшеИнтервал:
Закладка: