Иосиф Шкловский - Звезды: их рождение, жизнь и смерть
- Название:Звезды: их рождение, жизнь и смерть
- Автор:
- Жанр:
- Издательство:Наука, Главная редакция физико-математической литературы
- Год:неизвестен
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Иосиф Шкловский - Звезды: их рождение, жизнь и смерть краткое содержание
Книга посвящена центральной проблеме астрономии — физике звезд. Заключительный этап звездной эволюции представляет особенно большой интерес, так как он имеет прямое отношение к таким интереснейшим объектам современной астрономии, как пульсары, рентгеновские звезды и черные дыры. Проблемы, связанные с этими объектами, пока далеки от решения. Поэтому автор стремился осветить фактическое состояние вопроса, давая лишь общее представление о существующих: теориях и гипотезах. В книге рассматривается также проблема образования звезд.
Книга рассчитана на широкий круг лиц со средним образованием. Специальный интерес она представляет для студентов, лекторов, преподавателей, специалистов в области смежных наук.
Звезды: их рождение, жизнь и смерть - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
При очень высоких температурах, которые неизбежно должны возникнуть, когда пойдут реакции на легких ядрах (речь идет о температуре порядка миллиарда кельвинов), вещество начнет обладать взрывной неустойчивостью по причине очень быстро протекающих реакций типа
и аналогичных реакций для 16О, 20Ne и других легких элементов. Характерное время для таких реакций около 1 с, а удельный выход энергии достигает 5 10 17эрг/г. Если бы, например, взорвалась масса такого вещества, равная 0,1 массы Солнца, то выделилось бы
10 50эрг энергии, что уже близко к энерговыделению во время вспышек сверхновых I типа.
Таким образом, мы можем сделать вывод, что потенциально возможным ядерным горючим, ответственным за взрывы звезд, может быть только вещество, в высокой степени обогащенное легкими элементами. Обычная космическая «микстура» с химическим составом, подобным солнечному, не может ни при каких обстоятельствах привести к ядерному взрыву звезды. Пока, однако, совершенно открытым остается вопрос, каким же образом реализуется «подготовка» условий, необходимых для ядерного взрыва.
Наконец, остается возможность, что главным источником взрыва звезд является освобождение не ядерной энергии, а гравитационной при катастрофическом сжатии. Скорее всего, имеют значение оба вида энергии, хотя, как мы уже говорили выше, вся картина взрыва звезды еще далека от ясности. Тем не менее мы все же остановимся на некоторых теоретических разработках, которые, несомненно, будут полезны при создании в будущем (может быть, недалеком) теории взрыва звезд.
Английские теоретики Хойл и Фаулер рассмотрели интересную модель звезды накануне ее взрыва («предсверхновая»). Они ограничились вначале случаем сравнительно массивной звезды, M = 30 солнечных масс, причем за время эволюции перемешивания вещества не было. У таких звезд вещество в центральной части невырожденно, так как плотность там сравнительно невелика (см. § 12).
Можно полагать, что эти расчеты имеют отношение к проблеме вспышек сверхновых II типа. На заключительной фазе эволюции температура вещества в центральных областях такой звезды (вернее, модели звезды) очень велика, порядка нескольких миллиардов кельвинов. При такой температуре весь водород и гелий уже выгорели. Ядерные реакции идут очень быстро. Равновесное состояние вещества характеризуется преобладанием ядер элементов группы железа, имеющих минимальное значение «коэффициента упаковки». Ядро такой звезды окружено «мантией», температура которой значительно ниже, например, меньше миллиарда кельвинов. Химический состав этой оболочки резко отличен от химического состава ядра. В «мантии» преобладают легкие элементы — кислород, азот, неон, т.е. потенциальное ядерное горючее, необходимое для взрыва звезды. Наконец, «мантия» окружена самой наружной, водородно-гелиевой оболочкой. По расчетам этой модели масса центрального железного ядра составляет 3 солнечные массы, масса кислородной мантии 15, а все остальное приходится на долю довольно разреженной наружной водородно-гелиевой оболочки.
Условия для ядерного взрыва создаются тогда, когда в процессе эволюции железное ядро начнет катастрофически сжиматься (коллапсировать). Характерное время такого сжатия близко к времени свободного падения и составляет около 1 с. При катастрофическом сжатии ядра нарушается механическое равновесие и остальной части звезды, т. е. вес ее выше лежащих слоев уже не уравновешивается давлением газа снизу, и тогда наружные слои звезды начнут падать по направлению к ее центру. Через небольшой промежуток времени (тоже около секунды) кинетическая энергия падающей оболочки превратится в тепловую, что повлечет за собой быстрый ее нагрев. Тем самым создадутся условия для ядерного взрыва находящихся там легких элементов.
Весьма важным, однако, является то обстоятельство, что катастрофическое сжатие ядра звезды должно произойти за время меньшее, чем то, которое нужно для «спокойной» перестройки оболочкой своей структуры без взрыва. В § 6 довольно подробно уже обсуждали этот вопрос в связи с проблемой нарушения механического равновесия звезды, вызванного мгновенным «местным» выделением некоторого количества энергии. Время «спокойной» перестройки структуры звезды определяется скоростью звука, проходящего через нее. Эта скорость — порядка
(ср. § 6). В нашем случае, при размерах «мантии» звезды 3 10 9см скорость 3 з
10 9см/с, а время прохождения волны сжатия через звезду t з
R/ 3 з
3 с. Теперь важно понять, что если бы при сжатии ядра стала достаточно быстро расти температура его вещества, то сжатие не происходило бы катастрофически быстро. При этом звезда в каждый момент времени успевала бы «подстроить» свою структуру под изменившиеся условия в ядре и никакого взрыва не произошло бы. Об этом мы довольно подробно рассказывали, когда рассматривалось равновесие звезды (см. § 6).
Катастрофическим сжатие будет только тогда, когда у ядра имеется «холодильник», отбирающий у него выделяющуюся при сжатии тепловую энергию. Заметим, что мощность такого «холодильника» должна быть исключительно высокой, порядка 10 18эрг/г.
В настоящее время можно указать по крайней мере на два типа таких «холодильников». На первый обратили внимание Хойл и Фаулер. Он сводится к огромному поглощению энергии при диссоциации ядер железа на альфа-частицы и нейтроны. При повышении температуры такой процесс диссоциации неизбежен и будет сопровождаться поглощением огромного количества «скрытой теплоты диссоциации». Из каждого ядра железа получается 13 альфа-частиц и 4 нейтрона. Энергия связи нуклонов в ядре железа равна 8,79 МэВ, в то время как средняя энергия связи одного нуклона в полученной после диссоциации смеси альфа-частиц и нейтронов всего лишь 6,57 МэВ. Следовательно, чтобы разрушить (диссоциировать) железо на альфа-частицы и нейтроны, нужно истратить 2,22 МэВ на нуклон энергии или 2 10 18эрг/г. Что и говорить, превосходный холодильник! Его «работа» будет состоять в том, что как только при сжатии температура железного ядра поднимется до некоторой величины, ее дальнейший рост «надолго» прекратится, так как выделяющаяся при сжатии гравитационная энергия пойдет на диссоциацию ядер железа. А остановка нагрева сжимающегося ядра как раз и создаст благоприятные условия для детонации «порохового погреба» звезды, так как при этом ядро будет катастрофически сжиматься, а оболочка, не успевая «спокойно» перестроить свою структуру, станет падать к центру звезды, быстро при этом нагреваясь. Из-за этого пойдут взрывные реакции на легких элементах, входящих в состав «мантии».
Интервал:
Закладка: