Глеб Анфилов - Бегство от удивлений

Тут можно читать онлайн Глеб Анфилов - Бегство от удивлений - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Детская литература, год 1974. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Бегство от удивлений
  • Автор:
  • Жанр:
  • Издательство:
    Детская литература
  • Год:
    1974
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4.33/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Глеб Анфилов - Бегство от удивлений краткое содержание

Бегство от удивлений - описание и краткое содержание, автор Глеб Анфилов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга рассказывает о рождении и развитии механики как науки, искавшей и ищущей ответы на самые простые и глубокие вопросы об устройстве природы.

Бегство от удивлений - читать онлайн бесплатно полную версию (весь текст целиком)

Бегство от удивлений - читать книгу онлайн бесплатно, автор Глеб Анфилов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чтобы получить силу тяготения F, вспоминаем второй закон Ньютона и массу яблока множим на земное ускорение g, то есть 100 г·981 см/сек 2. Это вес. Рискуя показаться навязчивым, я напомню, что когда-то мы определяли его как давление тела на опору, потом — как силу тяготения, исходящую от центра масс Земли и приложенную к телу. Разумеется, яблоко, притягиваемое Землей, давит на опору. В свою очередь, опора давит на яблоко — исполняется третий закон. А потому между яблоком и опорой мы вправе поместить пружину. Она сожмется тем сильнее, чем сильнее тяготение. Вот мы и измерили с помощью весов земное притяжение.

Знаете радиус Земли? Напомню — 6300 километров, или 6,3·10 8см (перед вычислением все величины нужно свести к одной системе единиц).

Теперь можно вычислить.

Масса Земли m з=Fr 2/(γ·m я) = 100г · 981 см/сек 2· (6,3·10 8см) 2/(6,7·10 -8см 3/(г·сек 2) ·100 г) = 6·10 27г = 6·10 21т.

Подсчитали? Загляните в энциклопедию — масса Земли именно такова.

Вот и свершилось волшебство — по весу яблока определена гигантская масса планеты.

Это вас не восхищает?

Без весов

Пожалуй, будет лучше, если внимательный читатель вместо восхищения поймает автора за рукав и сделает ему замечание: по формуле закона всемирного тяготения массу Земли можно было определить и без взвешивания яблока. Ведь если вес яблока F = m яg, а r — земной радиус, то масса Земли

m з= m яgr 2/(γm я) = gr 2/γ

Масса яблока в числителе и знаменателе сокращается. Формула открывает удивительную возможность взвешивать Землю вообще без всяких весов — по постоянной тяготения и величине ускорения силы тяжести.

Если вы забыли значение g, покараульте с секундомером в руках возле какой-нибудь яблони, засеките время, за которое очередное яблоко пролетело с ветки до земной поверхности, потом измерьте высоту ветки, по галилеевской формуле s=gt 2/2 (из первой главы этой книжки), подсчитайте g и вставьте в только что выведенную формулу m з= gr 2/γ. Через минуту вычислений вы узнаете, во всей ее огромности, земную массу. Узнаете количество вещества своей планеты! Недаром Кавендиш, который, разумеется, превосходно помнил значение g, назвал свой исторический эксперимент, позволивший впервые вычислить постоянную тяготения «взвешиванием Земли». Он узнал γ и сразу подсчитал, какова масса земного шара.

Этим уже стоит чистосердечно восхититься.

Да, падающее яблоко многое могло подсказать наблюдательному Ньютону.

На вышине

Догадываетесь, в чем секрет замечательного умения, которым вы овладели вслед за Ньютоном и Кавендишем? Секрет в том, что использовано равенство тяжелой и инертной масс: ведь в числителе формулы стояла инертная масса из второго закона Ньютона, а в знаменателе — тяжелая масса из закона всемирного тяготения. Мы их сократили и были вправе сделать это только потому, что они не в состоянии «переспорить» друг друга, или, иначе говоря, только потому, что все тела падают одинаково быстро.

Так из явлений маленьких, ежеминутно происходящих на наших глазах, вырастают закономерности широчайшего охвата. Не в отвлеченном рассуждении, не в расплывчатой фразе, а в конкретном деловом расчете физик совмещает песчинку с планетой.

Предсказания Ньютона широки и многообразны.

Вы хотите узнать, сколько будет весить килограммовая буханка хлеба на вершине Монблана? Пожалуйста, используйте формулу всемирного тяготения. Получится 997 граммов. Пожелали выяснить значение ускорения силы тяжести на высоте орбитального полета Гагарина — та же формула даст вам ответ. Проделайте вычисления, и вы убедитесь, что оно там уменьшится незначительно — всего на одну шестнадцатую часть. На столько же уменьшился бы и вес. Это неожиданно для наивных людей, полагавших, что спутники невесомы из-за удаления от земного шара.

Боюсь, самым любопытным из читателей уже захотелось взвесить Солнце.

А почему бы и не взвесить?

Взвешиваем Солнце

Это весьма просто. Расстояние до Солнца спросим у астрономов. Они скажут: 150 000 000 километров. Кроме того, мы знаем, что Земля падает на Солнце, хоть и не может упасть.

Об этом странном факте нелишне поговорить поподробнее, пользуясь законами Ньютона.

Благодаря своей инерции Земля постоянно стремится улететь от Солнца по прямой (первый закон Ньютона). Вместе с тем Земля испытывает солнечное притяжение (закон всемирного тяготения) и приобретает ускорение, направленное к Солнцу (второй закон Ньютона). Эти два движения складываются — получается вечное обращение Земли вокруг Солнца.

Стоит напомнить, что свободное падение отнюдь не обязано быть отвесным. Пуля, вылетевшая из дула пистолета параллельно земной поверхности, приближается к ней так же быстро, как и пуговица, упавшая со стола. Земля как пуля. Она не отвесно падает на Солнце.

Каково же ускорение падающей Земли?

Длину земной орбиты подсчитать проще простого. Эта орбита — круг радиусом 150 миллионов километров. Помножьте радиус на «два пи» (6,28) — выйдет миллиард километров. Время — 365 суток, год нашей жизни. Отсюда нетрудно подсчитать, что за секунду Земля успевает пролететь 30 километров по своей орбите и одновременно упасть к Солнцу на три миллиметра. По формуле Галилея S =a ct 2/2 сразу же получаем значение ускорения Земли к Солнцу: а с= 0,6 см/сек 2. Маловато, конечно. Но зато мы можем не опасаться катастрофического столкновения со своим жарким светилом.

Масса Солнца теперь выясняется автоматически: 2·10 27тонн. Обратите внимание, на этот раз нам не понадобилась масса Земли. Достаточно было знать ускорение ее падения на Солнце. Любое тело, находящееся на земной орбите, будет падать к Солнцу с тем же ускорением — 0,6 см/сек 2. Так в астрономическом масштабе продолжает действовать постоянство ускорения свободного падения для тел каких угодно масс. Явление, которое мы подметили на сосульках, падающих с карниза!

Ангелы-бездельники

От Солнца переходим к планетам.

Было время, когда неглупые люди всерьез полагали, что планеты все время подталкиваются ангелами, потому-де они и движутся. На каждую по ангелу.

Как следует из ньютоновских законов, ангелы эти — бездельники. Планеты великолепно обходятся без них: по инерции летят прямо, а влекомые солнечным тяготением, падают на светило. В результате сложения этих двух движений планеты сворачивают с прямого пути и движутся по эллипсам — так называют в геометрии фигуры, похожие на овал.

Сумма расстояний точек эллипса от двух точек, лежащих внутри фигуры и называемых фокусами, постоянна (это геометрическое определение).

В одном из фокусов всегда находится Солнце. Это знал еще Кеплер. Если же фокусы совпадают, получается круг. Многие планеты (в их числе наша Земля) движутся по почти точным кругам.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Глеб Анфилов читать все книги автора по порядку

Глеб Анфилов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Бегство от удивлений отзывы


Отзывы читателей о книге Бегство от удивлений, автор: Глеб Анфилов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x