Айзек Азимов - Нейтрино - призрачная частица атома
- Название:Нейтрино - призрачная частица атома
- Автор:
- Жанр:
- Издательство:Атомиздат
- Год:1969
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Айзек Азимов - Нейтрино - призрачная частица атома краткое содержание
В книге известного популяризатора науки А. Азимова в живой и популярной форме изложены современные представления о самой неуловимой частице микромира — нейтрино. Азимов прослеживает цепь событий, приведших физиков к открытию нейтрино, рассказывает о том, как эту частицу научились регистрировать, о ее роли в эволюции Вселенной, о последних достижениях нейтринной физики — двухнейтринном эксперименте. Автор стремится раскрыть перед читателем современную физическую картину мира, но в то же время не подавить его массой сведений, столь обширных в этой области науки.
Книгой заинтересуются самые широкие круги читателей: школьники, преподаватели и те, кто следит за новейшими достижениями физики.
Нейтрино - призрачная частица атома - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Необходимо было предположить, что не одно ядерное поле ответственно за все мезонные взаимодействия, а два, одно из которых сильнее другого. Одно поле приводит к сильным взаимодействиям, как, например, взаимодействие π-мезона с ядром, а другое является причиной слабых взаимодействий в ряде распадов π-мезонов и μ-мезонов. Распад нейтрона разумно отнести к слабым взаимодействиям.
Если π-мезон является обменной частицей для сильных взаимодействий, должна, вероятно, существовать обменная частица и для слабых взаимодействий. Ферми разработал теорию слабых взаимодействий, для которой, по-видимому, необходима такая обменная частица. Иногда ее называют w-частицей (от английского слова weak — слабый). Согласно теории, w -частица, по-видимому, имеет большую массу в свободном состоянии. Она намного тяжелее протона, но время жизни ее только 10 -17 сек, что составляет приблизительно одну миллиардную времени жизни π-мезона. Поэтому ее не так-то легко зарегистрировать.
В настоящее время физики различают четыре типа полей, ответственных за все протекающие во Вселенной процессы. Это два ядерных поля: электромагнитное и гравитационное. Ядерное поле сильных взаимодействий — наиболее мощное из всех полей, оно в сотни раз сильнее электромагнитного. Поле слабых взаимодействий в сто миллиардов раз слабее электромагнитного но во много триллионов раз сильнее гравитационного поля. Насколько известно, гравитация остается пока наиболее слабой силой в природе [19] [19] В 1964 году физики на основе вновь полученных данных пришли к выводу о возможности существования пятого поля, более слабого, чем гравитационное. Однако предварительные эксперименты в начале 1965 года показали, что пятого поля не существует.
.
Тяжелый электрон
В 50-х годах μ-мезон становился все более и более загадочной частицей. В отличие от π-мезона, нужного для устойчивости ядер, он не играет никакой существенной роли, которую физики могли бы понять до конца. Более того, он постепенно теряет свою индивидуальность и становится все более и более похожим на разновидность электрона.
Это может показаться странным, так как наиболее отличительные свойства μ-мезона и электрона совершенно различны. Во-первых, μ-мезон в 207 раз тяжелее электрона, во-вторых, в то время как электрон — стабильная частица, μ-мезон нестабилен, он распадается за 2,212 ·10 -6 сек.
И все же ряд свойств электрона и μ-мезона совпадают:
1) заряд электрона равен -1, а его античастицы, позитрона, + 1. В этом отношении μ-мезон похож на электрон. У него есть две разновидности: отрицательный μ-мезон, который, подобно электрону, имеет заряд -1 и является частицей, и положительный μ-мезон, который, подобно позитрону, имеет заряд +1 и является античастицей. Отрицательный μ-мезон изображается символом μ -, а положительный μ-мезон, являющийся античастицей, символом 'μ +;
2) в природе не существует «нейтрального электрона», т. е. нет незаряженной частицы с массой электрона. Точно так же нет и «нейтрального μ-мезона»;
3) спины электрона и позитрона равны +1/2 или -1/2. Такие же значения имеют спины отрицательного и положительного μ-мезонов.
4) электрон и позитрон никогда не участвуют в сильных взаимодействиях, зато принимают участие в слабых, как и положительный и отрицательный μ-мезоны;
5) наконец, магнитные свойства электрона и позитрона фактически совпадают с магнитными свойствами отрицательного и положительного μ-мезонов.
Важно ли различие в массе и стабильности μ-мезона и электрона, если они во многом так похожи?
Что касается различия в стабильности, им можно вообще пренебречь. Я уже говорил, что в субатомных масштабах время жизни 0,000002212 сек чрезвычайно велико. Это время находится в таком же отношении ко времени, характерному для сильных взаимодействий, как десять миллиардов лет к одной секунде. Событие, продолжающееся десять миллиардов лет, практически «вечно» по сравнению с событиями, длящимися одну секунду. Аналогично в субатомных масштабах времени μ-мезон существует практически «вечно», и разница между его временем жизни и действительно бесконечным временем жизни электрона и позитрона незначительна.
А вот различие масс μ-мезона и электрона остается загадочным. Тяжелые частицы участвуют как в слабых, так и в сильных взаимодействиях, в то время как легкие частицы, очевидно, участвуют только в слабых взаимодействиях. Граница проходит через π-мезон; π-мезон— самая легкая из известных тяжелых частиц, участвующая в сильных взаимодействиях.
Однако μ-мезон, масса которого составляет примерно 3/4 массы π-мезона, не участвует в сильных взаимодействиях. Он участвует только в слабых взаимодействиях. Почему же, несмотря на свою массу, он не способен участвовать в сильных взаимодействиях? Увы, до сих пор на этот вопрос нет ответа. Почему отрицательный (μ-мезон в сущности так похож на электрон, а положительный μ-мезон — на позитрон? И если μ-мезоны действительно просто «тяжелые электроны», то почему их масса именно в 207 раз больше массы электрона — не больше и не меньше? До сих пор физики не получили ответа ни на один из этих вопросов.
Поскольку нам приходится рассматривать μ-мезоны как более тяжелые электроны и позитроны, то они должны считаться лептонами и подчиняться закону сохранения лептонного числа. Отрицательному μ-мезону, подобно электрону, приписали лептонное число +1, а положительному μ-мезону, подобно позитрону, -1. Физики установили, что при таком выборе во всех субатомных процессах с участием μ-мезонов закон сохранения лептонного числа выполняется. А поскольку μ-мезон является лептоном, чтобы не впадать в заблуждение, его назвали мюоном. Конечно, существуют отрицательные и положительные мюоны.
Что касается π-мезона, он оправдывает свое название. Прежде всего он и не лептон, и не барион. Если ему приписать нулевые лептонное и барионное числа, то во всех субатомных процессах с участием π-мезона законы сохранения лептонного и барионного чисел будут выполняться. Тем не менее, по аналогии с мюоном π-мезон стали все чаще и чаще называть пионом. Пион существует в двух зарядовых состояниях: положительный пион (π +), являющийся частицей, и отрицательный пион ('π -), представляющий собой античастицу. В отличие от электрона и мюона пион может существовать и в виде незаряженной частицы — нейтрального пиона (π 0), которая немного легче заряженного пиона — ее масса в 264 раза больше массы электрона, а живет она значительно меньшее время, распадаясь в течение 1,9·10 -16 сек. Особенно необычно то, что нейтральный пион, подобно фотону, является своей собственной античастицей.
Читать дальшеИнтервал:
Закладка: