Лев Ландау - Физика для всех. Молекулы

Тут можно читать онлайн Лев Ландау - Физика для всех. Молекулы - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Наука, год 1984. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Физика для всех. Молекулы
  • Автор:
  • Жанр:
  • Издательство:
    Наука
  • Год:
    1984
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4.63/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Лев Ландау - Физика для всех. Молекулы краткое содержание

Физика для всех. Молекулы - описание и краткое содержание, автор Лев Ландау, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Во второй из четырех книг 'Физики для всех' рассказано о строении вещества, о физических явлениях и процессах, которые происходят в реальных кристаллах и определяют их свойства. Читатель знакомится с различными фазовыми состояниями вещества, со структурой и свойствами жидких и твердых растворов, структурой кристаллов и молекул, с основными законами термодинамики.

Физика для всех. Молекулы - читать онлайн бесплатно полную версию (весь текст целиком)

Физика для всех. Молекулы - читать книгу онлайн бесплатно, автор Лев Ландау
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

При смешении льда с солью лед плавится, а соль растворяется в воде. Но на плавление нужно тепло, и лед забирает его у своего окружения. Таким образом, добавление соли ко льду приводит к понижению температуры.

Мы привыкли сейчас покупать фабричное мороженое. Раньше мороженое готовили дома, и при этом роль холодильника играла смесь льда с солью.

Кипение растворов

Явление кипения растворов имеет много общего с явлением замерзания.

Наличие растворенного вещества затрудняет кристаллизацию. По тем же самым причинам растворенное вещество затрудняет и кипение. В обоих случаях чужие молекулы как бы борются за сохранение как можно более разбавленного раствора. Иными словами, чужие молекулы стабилизируют состояние основного вещества (т.е. способствуют его существованию), которое может их растворить.

Поэтому чужие молекулы мешают жидкости кристаллизоваться, а значит, понижают температуру кристаллизации. Точно так же чужие молекулы мешают жидкости кипеть, а значит, повышают ее температуру кипения.

Любопытно, что до известных пределов концентрации (для не очень крепких растворов) как понижение температуры кристаллизации раствора, так и повышение температуры кипения нисколько не зависят от свойств растворенного вещества, а определяются лишь количеством его молекул. Это интересное обстоятельство используется для определения молекулярной массы растворяемого вещества. Делается это при помощи замечательной формулы (мы не можем здесь привести ее), которая связывает изменение температуры замерзания или кипения с количеством молекул в единице объема раствора (и с теплотой плавления или кипения).

Температура кипения воды повышается раза в три меньше, чем понижается температура ее замерзания. Так, морская вода, содержащая примерно 3,5 % солей, имеет точку кипения 100,6°С,; в то время как температура ее замерзания понижается на 2°С.

Если одна жидкость кипит при более высокой температуре, чем другая, то (при той же температуре) упругость ее пара меньше. Значит,- упругость пара раствора меньше упругости пара чистого растворителя.

О различии можно судить по следующим цифрам: упругость водяного пара при 20°С равна 17,5 мм рт. ст., упругость пара насыщенного раствора поваренной соли при той же температуре - 13,2 мм рт. ст.

Пар с упругостью 15 мм рт. ст., ненасыщенный для воды, будет пересыщен для насыщенного раствора соли. В присутствии такого раствора пар начнет конденсироваться и переходить в раствор. Разумеется, забирать водяной пар из воздуха будет не только раствор соли, но и соль в порошке. Ведь первая же капелька воды, выпавшая на соль, растворит ее и создаст насыщенный раствор.

Всасывание солью водяного пара из воздуха приводит к тому, что соль становится сырой. Это хорошо знакомо хозяйкам и доставляет им огорчения. Но это явление понижения упругости пара над раствором приносит и пользу: оно используется для сушки воздуха в лабораторной практике. Воздух пропускают через хлористый кальций, который является рекордсменом по забиранию влаги из воздуха. Если у насыщенного раствора поваренной соли упругость пара 13,2 мм рт. ст., то у хлористого кальция она 5,6 мм рт. ст. До такого значения упадет упругость водяного пара при пропускании его через достаточное количество хлористого кальция (1 кг которого "вмещает" в себя примерно 1 кг воды). Это ничтожная влажность, и воздух может считаться сухим.

Как очищают жидкости ит примесей

Одним из важнейших способов очистки жидкостей от примесей является перегонка. Жидкость кипятят и направляют пар в холодильник. При охлаждении пар опять превращается в жидкость, но эта жидкость будет чище исходной.

При помощи перегонки легко избавиться от твердых веществ, растворенных в жидкости. Молекулы таких веществ практически отсутствуют в паре. Этим способом получают дистиллированную воду - совершенно безвкусную чистую воду, лишенную минеральных примесей,

Однако, используя испарение, можно избавиться и от жидких примесей и разделить смесь, состоящую из двух или более жидкостей. При этом пользуются тем, что две жидкости, образующие смесь, кипят не одинаково.

Посмотрим, как будет себя вести при кипении смесь двух жидкостей, например смесь воды и этилового спирта, взятых в равных пропорциях (50-градусная водка).

При нормальном давлении вода закипает при 100°С, а спирт при 78°С. Смесь, о которой идет речь, закипит при промежуточной температуре, равной 81,2°С. Спирт кипит легче, поэтому упругость его пара больше, и при исходном пятидесятипроцентном составе смеси первая порция пара будет содержать 80 % спирта.

Полученную порцию пара можно отвести в холодильник и получить жидкость, обогащенную спиртом. Далее этот процесс можно повторять. Однако ясно, что практику такой способ не устроит - ведь с каждой последующей перегонкой будет получаться все меньше вещества. Чтобы такой потери не было, для целей очистки применяются так называемые ректификационные (т. е. очистительные) колонки.

Идея устройства этого интересного аппарата заключается в следующем. Представим себе вертикальную колонку, в нижней части которой находится жидкая смесь. К низу колонки подводится тепло, вверху производится охлаждение. Пар, образующийся при кипении, поднимается кверху и конденсируется; образовавшаяся жидкость стекает вниз. При неизменном подводе тепла к низу и отводе тепла сверху в закрытой колонке установятся встречные потоки пара, идущего кверху, и жидкости, стекающей вниз.

Остановим свое внимание на каком-либо горизонтальном сечении колонки. Через это сечение жидкость проходит вниз, а пар поднимается, при этом ни одно из веществ, входящих в состав жидкой смеси, не задерживается. Если речь идет о колонке, заполненной смесью спирта и воды, то количества спирта, проходящего вниз и вверх, так же как количества воды, проходящей вниз и вверх, будут равны. Так как вниз идет жидкость, а вверх пар, то это значит, что на любой высоте колонки состав жидкости и состав пара одинаковы.

Как только что было выяснено, равновесие жидкости и пара смеси двух веществ требует, напротив, разного состава жидкой и парообразной фаз.

Поэтому на любой высоте колонки происходит превращение жидкости в пар и пара в жидкость. При этом конденсируется высококипящая часть смеси, а из жидкости в пар переходит низкокипящая составляющая.

Поэтому идущий вверх поток пара будет как бы забирать со всех высот низкокипящую составляющую, а стекающий вниз поток жидкости будет непрерывно обогащаться высококипящей частью. Состав смеси на каждой высоте установится различный: чем выше, тем больше процент низкокипящей составляющей. В идеале наверху будет слой чистой низкокипящей составляющей, а внизу - слой чистой высококипящей.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Лев Ландау читать все книги автора по порядку

Лев Ландау - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика для всех. Молекулы отзывы


Отзывы читателей о книге Физика для всех. Молекулы, автор: Лев Ландау. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x