Пол Хэлперн - Коллайдер

Тут можно читать онлайн Пол Хэлперн - Коллайдер - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Эксмо, год 2010. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Коллайдер
  • Автор:
  • Жанр:
  • Издательство:
    Эксмо
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.8/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Пол Хэлперн - Коллайдер краткое содержание

Коллайдер - описание и краткое содержание, автор Пол Хэлперн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Осенью 2008 года газеты запестрели заголовками, сообщавшими» будто в недрах Большого адронного коллайдера (БАК), на котором физики собирались расщепить вещество на элементарные частицы, родятся микроскопические черные дыры, способные поглотить Землю.

Какое значение имеет БАК для науки? Что ученые ищут? Почему физика, возможно, вскоре совершит один из величайших рывков в своей истории? Все эти вопросы обсуждаются в книге «Коллайдер». Автор, кроме всего прочего, доказывает, почему невозможно ни практически, ни теоретически, что на БАК появятся черные мини-дыры, которых все так боятся.

Коллайдер - читать онлайн бесплатно полную версию (весь текст целиком)

Коллайдер - читать книгу онлайн бесплатно, автор Пол Хэлперн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Хотя, по Гейзенбергу, квантовой механике по самой ее природе присущи неопределенности, она дает рецепт, как вычислить вероятность. То есть она не гарантирует, что вы выиграете пари, но говорит, каковы ваши шансы. Скажем, квантовая механика дает вероятность того, что электрон из заданного положение перепрыгнет в какое-то другое. Если эта вероятность - ноль, вы знаете наверняка, что такой переход запрещен. Если нет, он разрешен, и в атомном спектре можно будет увидеть линии с соответствующей частотой.

В 1926 г. физик Эрвин Шрёдингер предложил более легкую для понимания версию квантовой механики, так называемую волновую механику. Развивая теорию, построенную французом Луи де Бройлем, Шрёдингер стал интерпретировать электроны как «волны материи». Что-то вроде световых волн, но представленных не электромагнитным излучением, а материальными частицами. Как эти волновые функции реагируют на физические силы, описывает уравнение, носящее имя Шрёдингера. Скажем, в атоме волновые функции электронов под действием электростатического притяжения со стороны ядра образуют «облака» разных форм, энергий и с разной средней удаленностью от центра. Эти облака не имеют материального наполнения. Они лишь показывают, с какой вероятностью электрон окажется в той или иной точке пространства.

Эти волновые структуры можно уподобить колебаниям гитарной струны. На закрепленной с обоих концов струне после щипка возникает стоячая волна. Лежа на пляже, мы видим бегущие волны, которые накатывают на берег. В отличие от них стоячей волне суждено двигаться только вверх-вниз. Но даже при таком ограничении у нее может быть несколько вершин (максимумов): одна, две или больше - главное, что это число должно быть целым, а не дробным. Волновая механика устанавливает соответствие между главным квантовым числом электрона и числом максимумов, что естественным образом объясняет, почему существуют именно эти состояния, а не другие.

К немалому огорчению Гейзенберга, многие его коллеги предпочли картину Шрёдингера. Возможно, потому что волновые процессы были им как-то ближе - проглядывает аналогия и со звуком, и со светом… Матрицы выглядели слишком отвлеченно. Впрочем, проницательный венский физик Вольфганг Паули доказал, что модели Гейзенберга и Шрёдингера полностью эквивалентны. Это как цифровая и аналоговая индикация - ни одна из них не уступает другой, а какую выбрать - дело вкуса.

Паули и сам оставил квантовой механике наследство: представление о том, что два электрона не могут занимать одно и то же квантовое состояние. Принцип запрета Паули привел двух голландских ученых, Самюэла Гаудсмита и Георга Уленбека, к идее о том, что электрон может выстраиваться в двух направлениях, то есть имеет спин. Как подсказывает название (англ. spin - «быстрое вращение»), спин характеризует внутренний момент импульса электрона. Но, прежде всего, интересны свойства спина по отношению к магнитному полю. Если поместить электрон в вертикальное магнитное поле (скажем, внутрь магнитной катушки), электрон, словно мини-магнит, будет смотреть либо по направлению поля («спин вверх»), либо против («спин вниз»).

Электрон - слуга двух господ: обычно он пребывает в смешанном состоянии, где позиции «спин вверх» и «спин вниз» представлены в равных долях. Постойте, как одна и та же частица может обладать двумя взаимоисключающими свойствами? В повседневной жизни стрелка компаса не может одновременно показывать и на север, и на юг, но в квантовом мире свои правила игры. Пока мы не измерили спин, у него, согласно принципу неопределенностей, нет четко заданного значения. Но вот экспериментатор включает внешнее магнитное поле, и тогда электрон поворачивается спином либо вверх, либо вниз - происходит, как говорят, коллапс волновой функции.

Допустим, два электрона идут в связке. Тогда, если у одного спин торчит вверх, другой тут же обращается вниз. Такой переворот имеет место, даже если электроны далеко друг от друга. В этом противоречащем интуиции явлении Эйнштейн усмотрел проделки «призрака дальнодействия». Из-за подобных странных взаимосвязей Эйнштейн был убежден, что когда-нибудь на смену квантовой механике придет более глубокая и более ясная теория.

Что касается Бора, он не открещивался от парадоксов, наоборот, чувствовал себя среди несовместимых понятий как рыба в воде. Например, именно он сформулировал принцип дополнительности, гласящий, что электрон - это одновременно и волна, и частица. Время от времени Бор также был не прочь изречь очередной афоризм. Однажды он сказал: «Глубокая истина - это такая истина, чьей противоположностью тоже является глубокая истина». Полностью в его духе было поместить в самый центр своего герба даосский символ единства противоположностей - инь-ян.

Несмотря на свою непримиримую философскую позицию, Эйнштейн соглашался с Бором в том, что квантовая механика превосходно объясняет экспериментальные данные. Одним из знаков признания ее заслуг было выдвижение Эйнштейном Гейзенберга и Шрёдингера на Нобелевскую премию по физике. Гейзенбергу ее присудили в 1932 г., а Шрёдингер в 1933 г. разделил эту честь с британским специалистом по квантовой механике Полем Дираком. (Эйнштейн и Бор - лауреаты соответственно 1921 и 1922 гг.)

Резерфорд, однако, по-прежнему относился к квантовой теории с настороженностью и основное свое внимание уделял экспериментальным исследованиям атомного ядра. В 1919 г. Томсон сложил с себя звание кавендишского профессора и оставил пост директора Кавендишской лаборатории, а за ним в эту почетную должность вступил Резерфорд. Свой последний год в Манчестере и первые годы после переезда в Кембридж он занимался тем, что бомбардировал различные ядра быстрыми альфа-частицами. Марсден в свое время заметил, что из того места, где альфа-частицы попадают в водородный газ, начинают лететь еще более быстрые частицы с более высокой проникающей способностью. Это оказались ядра атомов водорода. Резерфорд повторил опыты Марсдена, но заменил в них водород на азот. Каково же было его удивление, когда из азота тоже стали вылетать водородные ядра. Правда, сцинтилляции от ядер водорода, попадающих во флуоресцентный экран, не отличались яркостью, и их можно было увидеть только через микроскоп. Но они неоспоримо свидетельствовали о том, что атомы азота могут испускать из своих недр частицы. Открытие радиоактивности продемонстрировало, что атомы могут самопроизвольно превращаться друг в друга (претерпевать трансмутацию), а из экспериментов Резерфорда по бомбардировке вытекала возможность менять облик атомов искусственным образом.

Положительно заряженные частицы, входящие в состав всех ядер, Резерфорд стал называть протонами. Другие ученые хотели обозначить их термином «положительные электроны», но Резерфорд решительно воспротивился. Он отвечал, что протоны гораздо тяжелее электронов и вообще у них мало общего. Когда предсказание Дирака сбылось и все-таки был открыт настоящий положительно заряженный электрон, ему дали имя «позитрон». Позитроны стали первым известным представителем так называемой антиматерии, которая во всем похожа на обычную материю, но имеет заряд противоположного знака. Протоны, в свою очередь, являются неотъемлемой частью хорошо знакомой нам материи.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Пол Хэлперн читать все книги автора по порядку

Пол Хэлперн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Коллайдер отзывы


Отзывы читателей о книге Коллайдер, автор: Пол Хэлперн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x