Иэн Сэмпл - В поисках частицы Бога, или Охота на бозон Хиггса
- Название:В поисках частицы Бога, или Охота на бозон Хиггса
- Автор:
- Жанр:
- Издательство:КоЛибри
- Год:2012
- ISBN:978-5-389-02027-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Иэн Сэмпл - В поисках частицы Бога, или Охота на бозон Хиггса краткое содержание
В поисках частицы Бога, или Охота на бозон Хиггса - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Работы Максвелла поставили перед учеными, размышлявшими о природе материи, новую задачу. В то время преобладала ньютоновская модель мироздания, то есть считалось, что все в природе может быть объяснено в терминах вещества, принимающего ту или иную форму. Веришь в это — и нет необходимости во введении полей, ведь с помощью законов Ньютона можно описать всю материю и движение космоса как единую гигантскую механическую систему.
Очевидный конфликт идеологий возникал при определении сущности света. Ньютон утверждал, что луч света — поток крошечных частиц, или корпускул, а Максвелл говорил, что свет — волны. Тут возникал вопрос: что такое распространение волн? Какова природа электромагнитного поля? Эти вопросы ставили в тупик и самого Максвелла. Реакция тогдашних ученых показывает, как трудно поколебать хорошо укоренившиеся в науке представления. В поисках ответа было предложено ввести понятие эфира — странной формы материи, которой якобы заполнена вся Вселенная 39 39 Более подробную информацию об эфире см. в кн.: Lawrence Krauss. Quintessence. Vintage, 2001: Kevin С. Knox and Richard Noakes. From Newton to Hawking: A History of Cambridge University’s Lucasian Professors of Mathematics. Cambridge University Press, 2002.
. Световые волны, говорили защитники сей идеи, — это волны сжатия в эфире, подобно тому как звуковые волны — в воздухе.
Чтобы убедиться в существовании эфира, нужно было провести некоторые исследования. Ученые знали, что звуковые волны распространяются быстрее в жидкостях, чем в воздухе, и еще быстрее в твердых телах. Они также знали о невероятно большой скорости света. Отсюда следовало, что если свет представляет собой волны сжатия в эфире, то эфир — действительно некое экзотическое вещество, причем невидимое и не мешающее движению планет, ведь даже малейшее сопротивление полету этих небесных тел привело бы к их торможению и в конце концов — к весьма грациозному падению по спирали на Солнце.
Многие полагают, что введение эфира было серьезным заблуждением, но не будем столь категоричны. Детально разработанные неверные концепции иногда приносят пользу, заполняя бреши в нашем понимании природы. В лучшем случае заблуждения в науке какое-то время играют положительную роль, в худшем же они существенно тормозят прогресс подобно тому, как удачный выстрел не всегда способен остановить движение солдата, но зато может сделать его продвижение вперед мучительно болезненным и медленным.
Чудеса природы часто приводят в качестве доказательств грандиозной работы Бога, так было и с эфиром 40 40 Bernard Cohen and George E. Smith. The Cambridge Companion to Newton. Cambridge University Press, 2002.
. Если бы он реально существовал, то должен был бы иметь немыслимые размеры, обладать абсолютной прозрачностью и другими свойствами, которые трудно согласовать друг с другом. Для людей религиозных взглядов, а Максвелл был верующим человеком, было очевидно — только Господу под силу создать такое вещество. Лорд Кельвин, выдающийся ученый того времени, не сомневался, что свет распространяется в виде волн сжатия в эфире. (Впрочем, он также считал, что у радио нет никакого будущего, и утверждал, что идея создания пассажирских самолетов может прийти в голову только людям с куриными мозгами — понятно, что такие самолеты никогда не оторвутся от земли 41 41 Более подробную информацию о предсказаниях Кельвина см., например, в кн.: Gordon Fraser. The New Physics for the Twenty-First Century. Cambridge University Press, 2006: Ted Davis, Roger H. Stuerwer and Rutherford Aris. Springs of Scientific Creativity: Essays on Founders of Modern Science. University of Minnesota Press, 1983.
.) Пример Кельвина очень красноречив. Мы видим, что научные теории в будущем часто оказываются неправильными, а кроме того, ученые редко понимают, какую технологию завтра может породить их сегодняшнее открытие.
Максвелловская теория света поставила концепцию поля на прочную основу и тем самым заложила фундамент теории Хиггса. Но, чтобы Хиггс смог совершить свой прорыв в науке, понадобился еще более драматический поворот событий. Квантовая революция началась через двадцать лет после смерти Максвелла, и первый ее этап закончился в год рождения Хиггса. Ни в одну другую эпоху физики не пребывали в таком замешательстве, а сама наука физика никогда не была столь противоречива.
Величайшие научные революции порой начинаются с кажущихся на первый взгляд малозначительными экспериментов. Квантовая физика началась с наблюдения за изменениями цвета печи по мере нагрева. Этот эксперимент был не самым эффектным событием в истории науки, но он породил одну из самых важных теорий в физике XX века. Для обычного ученого этот эксперимент, возможно, так и остался бы незначительным. Но Макс Планк, усатый физик из Берлинского университета, был далеко не обычным человеком — он был просто одержим желанием понять законы природы. Эйнштейн писал, что Планком движет “голод души” 42 42 Barbara Lovett Cline. Men Who Made a New Physics: Physicists and the Quantum Theory. University Of Chicago Press, 1987.
. Говорили, что его страсть познания была сродни страсти влюбленного.
В автобиографии Планк, размышляя о своем отношении к науке, писал: “Крайне важно понять, что внешний мир есть нечто совершенно независимое от человека, нечто абсолютное, и поиски законов, которые управляют этим абсолютным миром, всегда казались мне самой возвышенной задачей науки” 43 43 Цитируется в кн.: William Cropper. Great Physicists (см. библиографию), автор, который ссылается на кн.: Max Planck. Scientific Autobiography and Other Papers (Physikalische Abhandlungen und Vortrage). New York Philosophical Library, 1949.
. Планк, возможно, лучше, чем кто-либо другой, понимал, что реальность, с которой мы сталкиваемся изо дня в день, является проявлением действия бесчисленных законов, управляющих игрой невидимых микроскопических объектов.
Все вокруг нас поглощает и излучает энергию в виде электромагнитных волн. Когда люди выделяют тепло, энергия излучается в виде инфракрасных волн. Эти волны невидимы для человеческого глаза, но могут быть зарегистрированы инфракрасной камерой типа тех, что используются полицией для слежки за преступниками в темноте. В эксперименте, который заинтересовал Планка, использовались печи, специально предназначенные для изучения теплового излучения.
Планк не должен был делать эксперименты сам. Он был физиком-теоретиком и анализировал данные, полученные его друзьями, работавшими в университетской лаборатории. Его задачей было найти объяснение результатов, и для этого он должен был разобраться, почему по мере нагрева печь меняет свой цвет.
Итак, нагреваясь, печь сначала становилась тускло-красной, затем ярко-красной, потом оранжевой, желтой и наконец блестяще-белой. Выходит, цвет напрямую связан с температурой, причем так строго, что по цвету можно определить температуру печи. Значит, размышлял Планк, изменение цвета указывает на “нечто абсолютное” — тут присутствует какая-то фундаментальная тайна природы. Чтобы цвет излучения менялся так, как он менялся, печь, нагреваясь, должна испускать волны со все более короткой длиной (красный свет имеет большую длину волны, чем оранжевый, а тот — большую, чем желтый), при этом диапазон длин волн испускаемого излучения расширяется. При самых высоких температурах печь испускает белый свет — светится сразу всеми цветами радуги.
Читать дальшеИнтервал:
Закладка: