LibKing » Книги » sci-phys » Александр Китайгородский - Физика для всех. Движение. Теплота

Александр Китайгородский - Физика для всех. Движение. Теплота

Тут можно читать онлайн Александр Китайгородский - Физика для всех. Движение. Теплота - бесплатно полную версию книги (целиком). Жанр: sci-phys, издательство Наука, год 1974. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
libking
  • Название:
    Физика для всех. Движение. Теплота
  • Автор:
  • Жанр:
  • Издательство:
    Наука
  • Год:
    1974
  • ISBN:
    нет данных
  • Рейтинг:
    3.77/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Александр Китайгородский - Физика для всех. Движение. Теплота краткое содержание

Физика для всех. Движение. Теплота - описание и краткое содержание, автор Александр Китайгородский, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.

Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.

Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Физика для всех. Движение. Теплота - читать онлайн бесплатно полную версию (весь текст целиком)

Физика для всех. Движение. Теплота - читать книгу онлайн бесплатно, автор Александр Китайгородский
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать
Это правило применяется и при сложении нескольких векторов Переходя из первой - фото 8

Это правило применяется и при сложении нескольких векторов. Переходя из первой точки во вторую, из второй в третью и т.д., мы пройдем путь, который можно изобразить ломаной линией. Но к той же самой точке можно пройти прямо из отправного пункта. Этот отрезок, замыкающий многоугольник, и будет векторной суммой.

Векторный треугольник показывает, разумеется, и как вычитать один вектор из другого. Для этого проводят их из одной точки. Вектор, проведенный из конца второго в конец первого, и будет разностью векторов.

Кроме правила треугольника, можно пользоваться равноценным ему правилом параллелограмма (рис. 5).

Это правило требует построения параллелограмма на складывающихся векторах и - фото 9

Это правило требует построения параллелограмма на складывающихся векторах и проведения диагонали из их пересечения. На рисунке видно, что диагональ параллелограмма и есть замыкающая треугольника. Значит, оба правила одинаково пригодны.

Векторы используются для описания не только перемещений. Векторные величины встречаются в физике часто.

Рассмотрим, например, скорость движения. Скорость есть перемещение за единицу времени. Раз перемещение – вектор, то и скорость – вектор, смотрящий в ту же сторону. При движении по кривой линии направление перемещения все время изменяется. Как же ответить на вопрос о направлении скорости? Небольшой отрезок кривой направлен так же, как касательная. Поэтому перемещение и скорость тела в каждый данный момент направлены по касательной к линии движения.

Складывать и вычитать скорости по правилу векторов приходится во многих случаях. Необходимость в сложении скоростей возникает, когда тело участвует одновременно в двух движениях. Такие случаи нередки: человек идет по поезду и, кроме того, движется вместе с поездом; капля воды, стекающая по стеклу вагонного окна, движется вниз под действием веса и путешествует вместе с поездом; земной шар движется вокруг Солнца и вместе с Солнцем совершает движение по отношению к другим звездам. Во всех этих и других подобных случаях скорости складываются по правилу сложения векторов.

Если оба движения происходят вдоль одной линии, то векторное сложение превратится в обычное сложение, когда оба движения направлены в одну сторону, и в вычитание, когда движения противоположны.

А если движения происходят под углом? Тогда мы прибегнем к геометрическому сложению.

Если, переправляясь через быструю реку, вы будете держать руль поперек течения, вас снесет вниз. Лодка участвовала в двух движениях: поперек реки и вдоль реки. Суммарная скорость лодки показана на рис. 6.

Еще один пример Как выглядит движение дождевой струи из окна поезда Вы - фото 10

Еще один пример. Как выглядит движение дождевой струи из окна поезда? Вы, наверное, наблюдали дождь из окон вагона. Даже в безветренную погоду он идет косо, так, как будто его отклоняет ветер, дующий в лоб паровозу (рис. 7).

Если погода безветренная, капля дождя падает вертикально вниз. Но за время падения капли вдоль окна поезд проходит изрядный путь, убегает от вертикали падения, поэтому дождь и кажется косым.

Если скорость поезда v п а скорость падения капли v к то скорость падения - фото 11

Если скорость поезда v п, а скорость падения капли v к, то скорость падения капли по отношению к пассажиру поезда получится векторным вычитанием v пиз v к *4 4 Здесь и в дальнейшем мы будем жирными буквами обозначать векторы, т.е. характеристики, для которых существенны не только величина, но и направление. . Треугольник скоростей показан на рис. 7. Направление косого вектора указывает направление дождя; теперь ясно, почему мы видим дождь косым. Длина косой стрелки дает в выбранном масштабе величину этой скорости. Чем быстрее идет поезд и чем медленнее падает капля, тем более косыми покажутся нам дождевые струи.

Сила – вектор

Сила, так же как и скорость, есть векторная величина. Ведь она всегда действует в определенном направлении. Значит, и силы должны складываться по тем правилам, которые мы только что обсуждали.

Мы часто наблюдаем в жизни примеры, иллюстрирующие векторное сложение сил. На рис. 8 показан канат, на котором висит тюк. Веревкой человек оттягивает тюк в сторону. Канат натянут действием двух сил: силы тяжести тюка и силы человека.

Правило векторного сложения сил позволяет определить направление каната и - фото 12

Правило векторного сложения сил позволяет определить направление каната и вычислить силу его натяжения. Тюк находится в покое; значит, сумма действующих на него сил должна равняться нулю. А можно сказать и так – натяжение каната должно равняться сумме силы тяжести тюка и силы тяги в сторону, осуществляемой при помощи веревки. Сумма этих сил даст диагональ параллелограмма, которая будет направлена вдоль каната (ведь иначе она не сможет «уничтожиться» силой натяжения каната). Длина этой стрелки должна будет изображать силу натяжения каната. Такой силой можно было бы заменить две силы, действующие на тюк. Векторную сумму сил поэтому иногда называют равнодействующей.

Очень часто возникает задача, обратная сложению сил. Лампа висит на двух тросах. Для того чтобы определить силы натяжения тросов, вес лампы надо разложить по этим двум направлениям.

Из конца равнодействующего вектора (рис. 9) проведем линии, параллельные тросам, до пересечения с ними. Параллелограмм сил построен. Измеряя длины сторон параллелограмма, находим (в том же масштабе, в котором изображен вес) величины натяжений канатов.

Такое построение называется разложением силы Всякое число можно представить - фото 13

Такое построение называется разложением силы. Всякое число можно представить бесконечным множеством способов в виде суммы двух или нескольких чисел; то же можно сделать и с вектором силы: любую силу можно разложить на две силы – стороны параллелограмма, – из которых одну всегда можно выбрать какой угодно. Ясно также, что к каждому вектору можно пристроить любой многоугольник.

Часто бывает удобным разложить силу на две взаимно перпендикулярные – одну вдоль интересующего нас направления и другую перпендикулярно к этому направлению. Их называют продольной и нормальной (перпендикулярной) составляющей силы.

Составляющую силы по какомуто направлению построенную разложением по сторонам - фото 14

Составляющую силы по какому-то направлению, построенную разложением по сторонам прямоугольника, называют еще проекцией силы на это направление.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Александр Китайгородский читать все книги автора по порядку

Александр Китайгородский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика для всех. Движение. Теплота отзывы


Отзывы читателей о книге Физика для всех. Движение. Теплота, автор: Александр Китайгородский. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img