Марио Бертолотти - История лазера

Тут можно читать онлайн Марио Бертолотти - История лазера - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Издательский Дом «Интеллект», год 2011. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    История лазера
  • Автор:
  • Жанр:
  • Издательство:
    Издательский Дом «Интеллект»
  • Год:
    2011
  • Город:
    Долгопрудный
  • ISBN:
    978-5-91559-097-6
  • Рейтинг:
    3.82/5. Голосов: 111
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Марио Бертолотти - История лазера краткое содержание

История лазера - описание и краткое содержание, автор Марио Бертолотти, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга, которую Вы взяли в руки — редкий сплав добротного изложения основ современной физики и ее истории. История науки предстает здесь в неразрывной связи драмы идей в познании природы и судеб конкретных людей. Все эти выдающиеся исследователи были захвачены в круговорот жестокой истории XX века, которой в книге уделено немало страниц.

Автору удалось совместить рассказы о жизненном пути замечательных личностей с пристальным, шаг за шагом, анализом гипотез, теории и эксперимента.

Для широкого круга читателей, интересующихся современной физикой.

История лазера - читать онлайн бесплатно полную версию (весь текст целиком)

История лазера - читать книгу онлайн бесплатно, автор Марио Бертолотти
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Таунс провел свой академический отпуск за 1955/56 г. наполовину в Париже, наполовину в Токио. Когда он был в Парижской высшей нормальной школе (Ecole Normal Superieure) осенью 1955г., один из его бывших аспирантов, Арнольд Хониг, который теперь работал в области парамагнитного резонанса, сообщил ему, что ионы мышьяка в кристаллах кремния имеют при температуре жидкого гелия огромное время релаксации, достигающее 16 с. Таунс сразу же понял, что это обстоятельство позволяет этим ионам оставаться достаточно долго на верхнем уровне, что позволит извлечь энергию с помощью вынужденного излучения. Он предложил сделать эксперимент. Когда Таунс покидал Японию весной 1956 г., этот эксперимент еще не закончился, и соответствующее устройство еще не работало. Однако Таунс был уверен в правильности выбранного пути и вместе со своими парижскими коллегами опубликовал статью, в которой обсуждались возможности предлагаемой системы.

Примерно в это же время, но независимо от Таунса, физик из MIT, М. В. Стрэндберг (г. р. 1919) рассмотрел возможность создания мазера, используя твердотельные материалы вместо газа. Во время войны он работал с радарами, а позднее стал интересоваться радиоспектроскопией, включившись в начале 1950-х гг. в работу по парамагнитному резонансу. 17 мая 1956 г. он выступил на семинаре MIT по парамагнитному резонансу с некоторыми соображениями о преимуществах твердотельного мазера. Среди слушателей был молодой голландец Николаас Бломберген, профессор факультета Прикладной физики Гарвардского университета.

Бломберген родился в Дордрехте, Нидерланды, 11 марта 1920 г. Он учился в университете Утрехта и получил степень кандидата и доктора соответственно в 1941 г. и в 1943 г., во время немецкой оккупации Нидерландов. Затем он сбежал в США и поступил в Гарвардский университет буквально через шесть недель после того, как Парселл, Торрун и Паунд обнаружили ядерный магнитный резонанс. Они были заняты написанием нового тома для серии книг, посвященных микроволновой технике (массачуссетская серия), и молодой Бломберген был принят, как помощник, и его попросили заняться дальнейшей разработкой аппаратуры ЯМР. Таким образом, он стал изучать ядерный магнитный резонанс, одновременно посещая лекции Швингера (1918-1994), Ван Флека и других.

На короткое время он возвратился в Нидерланды после войны и провел исследования в 1947-1948 годах в лаборатории Камерлинг-Онеса. В 1948 г. получил докторскую степень от Лейденского университета за диссертацию по ядерному магнитному резонансу, которая впоследствии была опубликована в виде книги. Затем возвратился в Гарвард и присоединился к Парселлу и Паунду, вместе с которыми выполнил важные работы по магнитному резонансу, о которых речь шла выше. Его огромные достижения в области ядерного магнитного резонанса, мазеров и нелинейной оптики были отмечены присуждением в 1981 г. Нобелевской премии по физике (он разделил ее с Шавловым и Сигманом).

После доклада Стрэнберга на семинаре Бломберген спросил его, почему он рассматривает твердотельную систему для мазера, ведь она не обладает спектральной чистотой, характерной для аммиачного мазера. Стрэнберг объяснил, что он рассматривает совершенно другое применение, а именно усилитель с очень малыми шумами. Бломберген воодушевился этой идеей и обсудил ее с Бенжаменом Лэксом, главой группы Физики твердого тела, который познакомил его с работой Таунса и его французских коллег. И в этой работе, и в идее Стрэнберга рассматривался двухуровневый мазер. Такое устройство предусматривало импульсный режим работы, и поэтому требовалось ненормально длительные времена релаксации. Очевидно, что устройство, лишенное этих недостатков, было бы более полезным, и Бломберген потратил несколько недель, размышляя, как бы реализовать это.

Знания Бломбергеном поведения вещества в магнитных полях позволило ему осознать, что для использования такого устройства нужно большее число уровней, которые можно получить, когда вещество подвержено магнитному полю (т.е. зеемановские уровни), чем два естественно существующих уровня молекулы. Поэтому Бломберген рассматривал эффект магнитного поля, чтобы выбрать по желанию два уровня, между которыми можно осуществить переход, настраивая частоту излучения, соответствующую разности энергий этих уровней. В результате он понял, что если вместо того, чтобы использовать два уровня, используется три уровня, тогда не нужно физически отделять молекулы в верхнем состоянии, но можно выбирать населенности уровней, путем искусного использования взаимодействий. Чтобы получить этот результат, он рассмотрел атомы, включенные в твердое тело в виде примесей. Атомы примеси замещают некоторые из атомов в твердом теле и находятся в изоляции друг от друга, окруженные соседними атомами твердого тела. В результате орбиты электронов атомов примеси очень мало возмущаются и остаются почти такими же, как в газовой фазе. Поэтому их уровни вполне отличны от уровней атомов твердого тела.

Чтобы понять предположение Бломбергена, вспомним, что атомы или ионы с n неспаренными электронами (т.е. с противоположными спинами) образуют во внешнем магнитном поле n + 1 магнитных уровней, интервал между которыми пропорционален напряженности магнитного поля (аномальный эффект Зеемана, который рассматривался в гл. 4). Теперь давайте рассмотрим вещество, обладающее тремя уровнями с неравными интервалами между ними (рис. 43). Некоторые парамагнитные ионы имеют такие уровни в подходящих кристаллах. Населенности уровней с энергиями Е 1, Е 2и Е 3имеют населенности n 1, n 2и n 3соответственно, и в условии термического равновесия мы имеем

n 1> n 2> n 3

Рис 43 Трехуровневая конфигурация парамагнитного материала При обычных - фото 46
Рис. 43. Трехуровневая конфигурация парамагнитного материала

При обычных магнитных полях разности энергий между уровнями довольно малы и соответствуют микроволновым частотам. Они также малы по отношению к тепловой энергии атомов, и поэтому эти три населенности мало отличаются друг от друга.

Пусть теперь система подвергается сильному излучению накачки на частоте f 13, которая соответствует разности энергий между уровнем 3 и уровнем 1. Такое поле, которое мы будем называть полем накачки, очевидно, поглощается и вызывает переходы между уровнями 1 и 3. Поскольку первоначально больше атомов находятся на основном уровне 1, система будет поглощать энергию, вызывая увеличение населенности уровня 3 за счет уровня 1. Итоговый эффект заключается в том, что населенности n 1, и n 3стремятся стать равными с увеличением n 3и уменьшением n 1. С другой стороны, населенность n 2не подвержена влиянию этого поля и поэтому остается той же самой. Первоначально она была слегка больше, чем n 3, но затем, в результате действия поля накачки, n 3увеличивается за счет n 1и может получиться ситуация, когда n 3больше, чем n 2и больше, чем n 1. Таким образом, между этими уровнями возникает инверсная населенность и может происходить вынужденный переход на частоте f 32или f 21, соответствующей разностям энергий между уровнями 3 и 2, или между 2 и 1 соответственно. Разумеется, чтобы получить достаточно сильное вынужденное излучение, нужна как можно большая инверсная населенность, а так как энергии между уровнями очень малы, нужно работать при очень низких температурах.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Марио Бертолотти читать все книги автора по порядку

Марио Бертолотти - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




История лазера отзывы


Отзывы читателей о книге История лазера, автор: Марио Бертолотти. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x