Марио Бертолотти - История лазера
- Название:История лазера
- Автор:
- Жанр:
- Издательство:Издательский Дом «Интеллект»
- Год:2011
- Город:Долгопрудный
- ISBN:978-5-91559-097-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марио Бертолотти - История лазера краткое содержание
Книга, которую Вы взяли в руки — редкий сплав добротного изложения основ современной физики и ее истории. История науки предстает здесь в неразрывной связи драмы идей в познании природы и судеб конкретных людей. Все эти выдающиеся исследователи были захвачены в круговорот жестокой истории XX века, которой в книге уделено немало страниц.
Автору удалось совместить рассказы о жизненном пути замечательных личностей с пристальным, шаг за шагом, анализом гипотез, теории и эксперимента.
Для широкого круга читателей, интересующихся современной физикой.
История лазера - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Чтобы сделать оптическое устройство этого типа, следует рассмотреть другие энергетические уровни по сравнению с микроволновым мазером. Микроволновые частоты настолько низкие, что зазор энергии между уровнями, нужный для генерации, можно найти во вращательно-колебательных состояниях молекул или в тонкой структуре атомов в магнитном поле, как мы уже об этом говорили. В оптическом случае испускаемые фотоны должны иметь энергию, по крайней мере, в сто раз большую, и поэтому требуются переходы между электронными уровнями атомов.
Другим существенным элементом является резонатор, который необходим для работы генератора и в микроволновой области, и в области существенно более коротких длинах волн. Микроволновые резонаторы имеют размеры, сравнимые с длиной волны, т.е. порядка сантиметра. С помощью существующей технологии изготовления таких резонаторов не представляет труда. В случае света, длина волны порядка 1 мкм или даже меньше. Поэтому изготовление резонатора таких размеров представлялось невозможным. Без резонатора невозможно получить существенное взаимодействие между частицами и излучением, вынужденное излучение слабо, и теряются принципиальные особенности устройства. Однако были рассмотрены альтернативные методы, способствующие эффективному взаимодействию между возбужденными частицами и излучением. Это была система, состоящая из двух полупрозрачных плоских зеркал, параллельных друг другу. Такая система уже использовалась в спектроскопии для измерений длин волн с высокой точностью. Как мы увидим далее, эта система является настоящим резонатором, хотя другой вид ее использовался для микроволновой области частот [6] А.М. Прохоров впервые предложил и экспериментально продемонстрировал использование микроволнового резонатора нового типа, состоящего из двух параллельно расположенных пластин. — Прим. пер.
. Она была придумана в 1899 г. двумя французскими учеными С. Фабри (1867—1945) и А. Перо (1863-1925). Сегодня эту систему двух зеркал называют интерферометром Фабри—Перо, или просто Фабри-Перо. Если излучение распространяется взад и вперед между зеркалами, то из-за интерференции внутри резонатора имеются лишь определенные длины волн. При пропускании излучения через такую систему зеркал получается система концентрических колец, радиусы которых зависят от длины волны. Этот интерферометр со времен Фабри и Перо используется для прецизионного исследования спектров (например, тонкой и сверхтонкой структуры).
С другой стороны, если внутри резонатора Фабри—Перо поместить инвертированную среду, то на этих резонансных частотах получается увеличенное взаимодействие между излучением и возбужденными атомами. В результате испускается излучение на определенных оптических длинах волн. Хотя размеры этого резонатора теперь много большие, чем длина волны, в нем происходит хорошая селекция возможных типов колебаний (мод), так как только излучение, которое распространяется взад и вперед между зеркалами, может генерироваться. Другое излучение, распространяющее даже под малым углом к поверхности зеркал, покидает резонатор после нескольких отражений.
Предложение Фабриканта
Как мы уже видели, первым среди претендентов на идею создать лазер, был Валентин Александрович Фабрикант (1907—1991), который сделал свое предложение в Советском Союзе в 1940-х гг.
Фабрикант начал свою научную карьеру студентом физико-математического факультета Московского университета у Г.С. Ландсберга. После окончания его он поступил на работу во Всесоюзный электротехнический институт (ВЭИ). В 1932 г. его внимание было сконцентрировано на проблемах оптики и свойств электрического разряда в газах. Он опубликовал ряд работ, в которых он изучал спектральный состав и интенсивность излучения, испускаемого при электрических разрядах в газах, в частности, исследуя процессы столкновений между возбужденными атомами и электронами и передачи энергии, происходящие в этих процессах.
Атом или очень быстрый электрон может столкнуться с другим атомом и передать часть своей энергии, которая, если она достаточная, может возбудить ударяемый атом и перевести его на возбужденный уровень. Это называется столкновением первого рода. Также существует другой вид столкновения, который называется столкновением второго рода. В нем атом, который уже находится в возбужденном состоянии сталкивается с другим атомом, который находится в основном состоянии, и передает ему свою энергию. В результате первый атом возвращается в основное состояние, а второй атом перепрыгивает на возбужденный уровень. Оба эти атома необязательно должны быть одного и того же вида; существенно, что оба возбужденных уровня имеют одну и ту же энергию. Если два атома разного вида, то тогда возможно с помощью этого механизма, что атомы одного вида, скажем А, возбуждают атомы другого вида, скажем В, при этом возбужденный уровень может иметь больший номер, чем тот, что получился бы в результате термических столкновений первого рода. В результате, для атомов В может получиться распределение на некоторых уровнях, которое будет отличаться от распределения Максвелла— Больцмана. Эта возможность и интересовала Фабриканта.
В 1939 г. он стал изучать возможность получения населенностей возбужденных атомов, больших, чем следует из распределения Больцмана, и старался показать, что когда излучение проходит через среду, в которой реализована такая инверсия, населенностей, то возможно наблюдать усиление излучения, а не поглощение. После он предложил способ экспериментально реализовать инверсную населенность при разряде в смеси газов, при котором используются столкновения атомов. Эти результаты были включены в его докторскую диссертацию, которую он защитил в 1939 г. В это время интересы Фабриканта были связаны с получением экспериментальных доказательств существования вынужденного излучения. Позднее он рассматривал эту проблему более интенсивно, и 18 июня 1951 г., он подал вместе со своими сотрудниками заявку на патент относительно нового метода усиления света, озаглавленную: «Метод усиления электромагнитного излучения (ультрафиолетового, видимого, инфракрасного и радиоволн), отличающийся тем, что усиливаемое излучение пропускается через среду, в которой с помощью дополнительного излучения, или другими способами, создается избыток концентрации на верхних уровнях по отношению к равновесной концентрации атомов, других частиц, или систем». В патенте идеи использования вынужденного излучения для усиления излучения были развиты более конкретным образом.
Однако патент был опубликован лишь в 1959 г. и нет возможности знать, какая формулировка и описание были в первоначальной заявке. Формулировка 1959 г. очень общая и, практически, покрывает все, что относится к мазерам и лазерам. После подачи заявки Фабрикант и его сотрудники проводили экспериментальные работы в разных условиях, но без успехов. Хотя они и опубликовали экспериментальные подтверждения своих идей, но они были опровергнуты.
Читать дальшеИнтервал:
Закладка: