Барри Паркер - Мечта Эйнштейна. В поисках единой теории строения
- Название:Мечта Эйнштейна. В поисках единой теории строения
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Барри Паркер - Мечта Эйнштейна. В поисках единой теории строения краткое содержание
Barry Parker. Einstein's Dream. The search for a unified theory of the Universe.
В популярной форме изложены современные представления об эволюции Вселенной, рассказано о попытках построения единой теории поля, объединения общей теории относительности и квантовой теории. Без привлечения математического аппарата автор доступно излагает основы теории чёрных дыр, квантовой хромодинамики, супергравитации и суперструн; подробно останавливается на нерешённых проблемах космологии. Попутно рассказывается об учёных, работавших в космологии и смежных областях, и их основных достижениях.
Для читателей, интересующихся современными представлениями и гипотезами о строении и эволюции физического мира.
Мечта Эйнштейна. В поисках единой теории строения - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Поначалу преподавание в Беркли ему не давалось. Судя по воспоминаниям его первых учеников, Оппенгеймер невнятной скороговоркой произносил текст лекции, зажав в одной руке сигарету, в другой – кусок мела, так что студенты часто держали пари 88 в надежде, что он сунет мел в рот или начнёт писать на доске сигаретой. Но этого так и не случилось.
Очень скоро Оппенгеймер понял, что студенты за ним не успевают, сбавил темп и начал лучше излагать материал. Он очень любил общаться со студентами после занятий, мог часами объяснять что-то и хвалил студентов, даже если они того не заслуживали. Но на экзаменах спуску не давал, и многие его боялись. Для выпускников – у него их набиралось по крайней мере человек двенадцать – он был кумиром и примером для подражания. Оппенгеймер приглашал их в кафе, угощал новыми блюдами и винами и проводил с ними много времени. Их шутя называли «свитой Оппи». Это была элита, лучшие американские студенты, многие из которых впоследствии прославились.
То было самое плодотворное время в жизни Оппенгеймера. Он много публиковался, и работы у него были серьёзные, хотя и не настолько выдающиеся, чтобы претендовать на Нобелевскую премию. Кто-то из студентов сказал, что, несмотря на острый и проницательный ум, он никогда первым не добивался результатов, потому что не развивал своих идей.
В 40-е годы в его жизни начался новый этап. В 1938 году немецкие физики Ган и Штрассман открыли процесс деления ядра, и вскоре стало очевидно, что на основе этой реакции можно сделать мощную бомбу. США находились в состоянии войны с Германией, и, узнав, что там занимаются такими разработками, американцы последовали примеру немцев. Оппенгеймер участвовал в большинстве предварительных обсуждений. На одном из первых он представил расчёты по количеству расщепляемого материала, который требуется для создания бомбы, и в 1940 году его назначили руководителем проекта. Вначале ему пришлось искать место для секретной лаборатории. Зная горные районы Нью-Мехико, он остановил свой выбор на Лос-Аламосе. Как известно, атомная бомба была создана и применена.
Основным вкладом Оппенгеймера в астрофизику было открытие постоянно коллапсирующей звезды. Интересно, что это его единственный экскурс в данную область. Бо?льшая часть работ 1938-1939 годов, когда он опубликовал свою статью по астрофизике, посвящена квантовой теории и ядерной физике. Странный результат поразил учёного. Вот что Оппенгеймер писал коллеге в 1939 году: «Мы занимались статическими и нестатическими решениями для очень больших масс, истощивших источники ядерной энергии. Это могут быть старые звёзды, от которых в результате коллапса осталось только нейтронное ядро. Результаты получились очень странные…»
Открытая Оппенгеймером и Снайдером звезда некоторое время привлекала внимание учёных, но постепенно интерес к ней угас. Многие астрономы считали, что эти поразительные результаты для современной астрономии не имеют значения, ведь такие экзотические объекты вряд ли существуют в природе. Без сомнения, Оппенгеймер продолжил бы работу в этом направлении, но тут началась война, и он переключился на атомную бомбу. К проблеме коллапсирующих звёзд он больше не возвращался. В 50-х годах, когда ей во всём мире занималась горсточка учёных, дело продвигалось плохо. Но в начале 60-х годов положение изменилось. Были открыты странные объекты, напоминающие звёзды (теперь они называются квазарами). Оказалось, что они выделяют колоссальное количество энергии. Каков механизм этого процесса? Нет ли тут связи с чёрными дырами? Открытие вызвало некоторый интерес, но, так как нейтронные звёзды ещё не были обнаружены, чёрные дыры никто всерьёз не принял.
Затем в 1967 году, когда Джослин Белл впервые зафиксировала пульсирующий сигнал, и уже через год астрономы точно знали, что обнаружена первая нейтронная звезда. Тогда они обратили внимание на чёрные дыры: об их существовании теоретически было известно давно, но неясно было, существуют ли они в действительности. Как только учёные занялись чёрными дырами, им удалось добиться больших успехов. В Соединённых Штатах над этой проблемой работали Джон Уилер, Кип Торн, Ремо Руффини и другие, в Советском Союзе – Я. Б. Зельдович и И. Д. Новиков, в Англии – Роджер Пенроуз, Брендон Картер и Стивен Хокинг. Через несколько лет теория чёрных дыр была разработана достаточно хорошо.
Основным инструментом в изучении чёрных дыр служит общая теория относительности, хотя следует заметить, что чёрные дыры не являются её «продуктом». Если когда-то в будущем выяснится, что общая теория относительности неверна, это не будет означать, что чёрных дыр не существует. Они существуют во всех серьёзных теориях гравитации. Например, теория Дикке и Бранса, которую сейчас считают основной соперницей общей теории относительности, также предсказывает их существование.
Издали нельзя сказать, что в чёрной дыре есть что-то необычное, разве что её странный вид. Гравитационное поле у неё такое же, как было до коллапса. Если вокруг массивной звезды вращается планета, а звезда внезапно сколлапсирует и превратится в чёрную дыру, планета останется на той же орбите. Там она может вращаться ещё миллиарды лет. Правда, в конце концов под действием определённых сил планета медленно приблизится к чёрной дыре и за критической точкой будет втянута внутрь и смята.
Но если гравитационное поле после коллапса остаётся таким же, как до него, откуда столько разговоров о какой-то невероятной силе гравитации? Действительно, поле вокруг звезды не меняется, но не следует забывать, что первоначально звезда имела, скажем, миллион километров в диаметре, а чёрная дыра – около десяти километров. Это означает, что можно ближе подойти к источнику поля, и по мере приближения к нему интенсивность поля возрастает.
Чёрная дыра не излучает света, и всё же, если приближаться к ней на ракете, станет ясно, что она где-то рядом. Мы почувствуем её притяжение и даже сможем увидеть её в телескоп. Она покажется нам чёрным кругом на фоне звёзд, из самой дыры свет не излучается. Вблизи неё следует соблюдать осторожность – стоит кораблю подойти слишком близко, как его затянет в чёрную дыру и спастись уже не удастся.
Чтобы понять, к каким последствиям приведёт появление чёрной дыры, для начала рассмотрим коллапс достаточно большой звезды, которая способна образовать такую дыру. Предположим, что эта звезда не вращается. По мере «старения» она расходует свою энергию и превращается в красного гиганта, но в конце концов её топливо кончается и звезда становится неустойчивой. Термоядерная «печь» обеспечивала направленное вовне давление, которое уравновешивало силу гравитационного сжатия, но теперь его нет. Гигантская сила сжатия скоро становится неодолимой. Если звезда невелика (меньше одной массы Солнца), коллапс растягивается на миллионы лет, но для массивных звёзд он происходит практически мгновенно. Ядро звезды начинает стремительно сжиматься, и меньше чем за тысячную долю секунды звезда превращается в чёрную дыру.
Читать дальшеИнтервал:
Закладка: