Барри Паркер - Мечта Эйнштейна. В поисках единой теории строения
- Название:Мечта Эйнштейна. В поисках единой теории строения
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Барри Паркер - Мечта Эйнштейна. В поисках единой теории строения краткое содержание
Barry Parker. Einstein's Dream. The search for a unified theory of the Universe.
В популярной форме изложены современные представления об эволюции Вселенной, рассказано о попытках построения единой теории поля, объединения общей теории относительности и квантовой теории. Без привлечения математического аппарата автор доступно излагает основы теории чёрных дыр, квантовой хромодинамики, супергравитации и суперструн; подробно останавливается на нерешённых проблемах космологии. Попутно рассказывается об учёных, работавших в космологии и смежных областях, и их основных достижениях.
Для читателей, интересующихся современными представлениями и гипотезами о строении и эволюции физического мира.
Мечта Эйнштейна. В поисках единой теории строения - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Представим себе, что нам удалось «растянуть» коллапс во времени и теперь мы наблюдаем результат замедленной съёмки. Вскоре после начала сжатия происходит всплеск рентгеновского и гамма-излучения. Коллапс продолжается, и фотонам становится всё труднее противостоять растущему притяжению. Фотоны, которые покидают поверхность под углом, имеют искривлённую траекторию (как следует из общей теории относительности). Те же, которые улетают по траекториям, параллельным поверхности, остаются на орбите вокруг звезды, и через долю секунды ни один фотон уже не может вырваться – звезда прошла то, что называется горизонтом событий . Мы уже не можем непосредственно наблюдать её; на том месте, где была звезда, видна только чёрная сфера. Однако вещество звезды продолжает коллапсировать и за горизонтом событий; более того, коллапс продолжается вечно, и в конце концов вещество сжимается до нулевого объёма в центре звезды. Этот центр называется сингулярностью.

Возможно, так выглядит чёрная дыра в космосе. Скопление звёзд около неё – оптическая иллюзия, вызванная сильным искривлением пространства в окрестности дыры
Наблюдал ли кто-нибудь коллапс звезды так, как мы его описали? Ответ однозначен – нет. Звезда сжимается слишком быстро. Мы могли бы видеть только в некой точке пространства огромную звезду, которая затем внезапно исчезнет (если нам повезёт и мы увидим коллапс). Но это очень маловероятно – за десятки лет лишь несколько звёзд по соседству с нами превратились в чёрные дыры.
Вернёмся к коллапсу и рассмотрим его повнимательней. Если бы мы смогли увидеть его в замедленном варианте, то заметили бы, как звезда сожмётся и покраснеет. Покраснение вызывается следующим из общей теории относительности замедлением времени. Фотоны похожи на крошечные очень точно идущие часы; если время замедляется, частота колебаний уменьшается, отчего фотоны «краснеют».

Чёрная дыра «в разрезе». Показаны горизонт событий и сингулярность в центре
По мере приближения звезды к горизонту событий испускаемый ею свет попадает в «ловушку», создавая красное гало, которое держится некоторое время. Но постепенно красное свечение угаснет, и перед нами окажется только тёмная сфера – чёрная дыра.
До сих пор мы описывали коллапс так, как видел бы его наблюдатель, находящийся далеко от звезды. Для него звезда уменьшалась бы в размере до тех пор, пока не стала бы чёрной дырой и не прекратила сжиматься, т.е. как бы замёрзла. Более пристальный взгляд позволяет заметить, что, подходя к критическому размеру, звезда становится всё меньше, но достичь его не может. А как коллапс выглядит для наблюдателя, который находится на поверхности сжимающейся звезды? Увидит ли он то же самое? Оказывается, нет. Для него всё будет по-другому. По его часам звезда сожмётся за конечное время, за долю секунды он проскочит через горизонт событий и будет раздавлен в центре звезды, где сосредоточится вся её масса. Но с точки зрения удалённого наблюдателя тот, кто находился на поверхности звезды, так и останется там на долгие годы после начала коллапса.
Такой необычный на первый взгляд результат является следствием странного поведения времени: оно идёт с разной скоростью, которая зависит от того, насколько близко от чёрной дыры находится наблюдатель. Предположим, что есть два наблюдателя, A и B , которые разместились на некотором расстоянии от чёрной дыры каждый со своими часами. После синхронизации часов один из наблюдателей, скажем B , помахав на прощанье рукой, устремляется к чёрной дыре. Тот, кто остался на месте ( A ), смотрит, как он постепенно приближается к чёрной дыре. С помощью телескопа он видит часы B и замечает, что по мере приближения к чёрной дыре они идут всё медленнее. Наконец они почти, но всё же не совсем, останавливаются. Самому B кажется, что он никак не может долететь до поверхности чёрной дыры.
Что же видит наблюдатель B , летящий к чёрной дыре? Для него звезда выглядит «замёрзшей»; он быстро приближается к чёрной дыре; глядя на часы, он видит, что они идут нормально. Если же он оглядывается, то видит, что часы A спешат, причём, чем ближе он подлетает к дыре, тем больше.
Приближаясь к чёрной дыре, он замечает ещё кое-что: его начинает растягивать и раздирать на части. Происходит это под действием так называемых приливных сил, которые действуют, когда на небольшом расстоянии происходит резкое изменение поля тяготения. Если ноги окажутся ближе к поверхности чёрной дыры, чем голова, их будет притягивать к ней с большей силой, и тело начнёт растягиваться. То же явление, только в меньшей степени, наблюдается по мере приближения к нейтронной звезде. Когда наш наблюдатель окажется у самой поверхности чёрной дыры, его тело будет походить на натянутую струну. Позднее мы увидим, что если чёрная дыра достаточно массивна, приливные силы малы. Предположим, что в данном случае это так, и закончим наш рассказ.
За конечное (весьма короткое) по его часам время падающий наблюдатель пройдёт через горизонт событий и попадёт в «отдалённую местность» внутри. Скрывшись за горизонтом, он исчезнет для внешнего мира. Он никогда не сможет вернуться, никогда не сможет дать о себе знать. Именно этим объясняется название «горизонт событий»: он является пределом (горизонтом) событий в нашей Вселенной.
Попав в чёрную дыру, наш наблюдатель не сможет сообщить о том, что видит; он всё время будет приближаться к её центру. Если он попытается вернуться к горизонту событий, то обнаружит, что горизонт удаляется от него со скоростью света, а он, естественно, не может двигаться так быстро. В центре находится то, что осталось от звезды после коллапса, – сингулярность.
По мере приближения к сингулярности наблюдатель заметит, что пространство и время поменялись ролями. По нашу сторону горизонта событий мы можем управлять пространством, но не временем: время течёт одинаково независимо от наших действий. Но за горизонтом, как ни странно, можно управлять временем, но не пространством, – нас затягивает сингулярность, хотим мы этого или нет. Оказавшись с ней рядом, мы поймём, что нас ждет та же судьба, что и звезду – нас сожмёт до нулевого объёма.
Чёрная дыра, о которой шла речь выше, относится к невращающимся. Решение уравнения Эйнштейна, соответствующее такой чёрной дыре, было найдено Шварцшильдом, поэтому она называется шварцшильдовской. Однако большинство звёзд, если не все, вращается, и, следовательно, вращаются образовавшиеся из них чёрные дыры. Решение для таких случаев нашёл в 1963 году Рой Керр из Техасского университета. Решение это сложнее предложенного Шварцшильдом, и соответственно сложнее поведение чёрной дыры.
Читать дальшеИнтервал:
Закладка: