Барри Паркер - Мечта Эйнштейна. В поисках единой теории строения
- Название:Мечта Эйнштейна. В поисках единой теории строения
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Барри Паркер - Мечта Эйнштейна. В поисках единой теории строения краткое содержание
Barry Parker. Einstein's Dream. The search for a unified theory of the Universe.
В популярной форме изложены современные представления об эволюции Вселенной, рассказано о попытках построения единой теории поля, объединения общей теории относительности и квантовой теории. Без привлечения математического аппарата автор доступно излагает основы теории чёрных дыр, квантовой хромодинамики, супергравитации и суперструн; подробно останавливается на нерешённых проблемах космологии. Попутно рассказывается об учёных, работавших в космологии и смежных областях, и их основных достижениях.
Для читателей, интересующихся современными представлениями и гипотезами о строении и эволюции физического мира.
Мечта Эйнштейна. В поисках единой теории строения - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Заслуживает упоминания ещё один, последний кандидат. Раньше мы забраковали чёрные дыры, потому что они образовывались при коллапсе барионного вещества. Однако к ним относятся только чёрные дыры, появившиеся при коллапсе звёзд, а принято считать, что должны существовать и другие чёрные дыры, так называемые реликтовые. Неплохими кандидатами считаются все чёрные дыры, которые образовались раньше дейтерия. Правда, они должны быть относительно невелики, но всё-таки на их массу можно рассчитывать. Ограничения накладывает также и испарение Хокинга; он показал, что все чёрные дыры, масса которых в момент образования была меньше 10 15г, к настоящему времени уже должны были испариться. Отсюда следует, что внимания заслуживают только те из них, масса которых составляет от 10 15до 10 32г. Поскольку примерно таков диапазон масс планет, их называют планетарными чёрными дырами.
Если учесть вклад всех перечисленных выше видов масс, то может показаться, что суммарной массы вполне достаточно для обеспечения замкнутости Вселенной. Однако сотрудник Чикагского университета Дэвид Шрамм с этим не согласен; из расчётов его группы следует, что средняя плотность вещества очень близка к пограничной – той, которая лежит на границе между замкнутой и открытой Вселенной.
Видимо, наиболее надёжным способом ответа на вопрос, замкнута или открыта Вселенная, является точное измерение её средней плотности, и в последнее время именно он привлекает наибольшее внимание. Но это отнюдь не единственный способ; можно, например, использовать диаграмму Хаббла. Если ускорение галактик одинаково до самых дальних окраин Вселенной, то на диаграмме получится прямая; если же галактики замедляются, линия будет искривлена. По степени этого искривления можно понять, достаточно ли замедление для прекращения расширения Вселенной.
Метод кажется довольно простым – достаточно построить график, охватывающий самые дальние, «приграничные» районы Вселенной, и определить степень искривления получившейся линии. Но как и при определении средней плотности, здесь тоже не обходится без трудностей. Уже отмечалось, что для удалённых районов Вселенной провести точные измерения очень трудно; кроме того, возникают и другие проблемы. Вглядываясь в космические дали, мы заглядываем в прошлое, а значит, видим галактики такими, какими они были давным-давно. При этом, естественно, возникают вопросы, связанные с эволюцией Вселенной: как эти галактики выглядят сегодня, насколько они изменились? Из многих теорий следует, что галактики (в особенности эллиптические) раньше были гораздо ярче, т.е. нам представляется, что они находятся ближе, чем на самом деле. Из других же теорий вытекает, что некоторые галактики могут расти, поглощая соседние, а потому сейчас они гораздо ярче, чем в прошлом, и значит кажутся нам расположенными дальше.
Исследование дальних границ Вселенной даёт много свидетельств процесса эволюции. За некоторым пределом наблюдаются уже только радиогалактики, а на самых окраинах видны только квазары. Попытка использовать эти объекты для нанесения точек на диаграмму Хаббла совершенно бессмысленна; такие точки оказываются далеко в стороне от прямой, соответствующей обычным галактикам. Более того, раз точно не известно, что такое квазары, вряд ли можно ожидать от них помощи. Поскольку они так далеки (и имеют небольшой возраст), то, вероятно, могут являться первичными формами галактик, хотя с таким представлением согласны очень немногие астрономы.
Ещё один метод решения нашей проблемы основан на так называемом подсчёте чисел. Как и в предыдущих случаях, основная идея проста, но, к сожалению, приводит к неоднозначным результатам. Нужно лишь подсчитать в заданном направлении, насколько хватит глаз, количество галактик или объектов других типов, а затем построить график зависимости числа зарегистрированных объектов от расстояния. Таким образом можно определить глобальную кривизну; если она положительна, Вселенная замкнута, а если отрицательна – открыта. В плоской Вселенной точки на построенном графике были бы распределены равномерно по всем направлениям и для всех расстояний. При положительной кривизне следует ожидать избытка точек в близких районах, а при отрицательной – напротив, их недостатка. Широкомасштабные исследования, проведённые в 70-х годах в Университете штата Огайо, казалось бы, продемонстрировали избыток точек, а значит, и замкнутость Вселенной, однако недавние проверки не подтверждают этого вывода.
Заслуживает упоминания и метод определения угловых размеров. Суть его состоит в тщательном измерении диаметра галактик конкретного вида; затем аналогичное измерение производится для другой галактики того же типа, расположенной гораздо дальше, но на известном расстоянии. Если пространство искривлено, то в измерение диаметра как бы вносится ошибка – его величина будет казаться больше при положительной кривизне и меньше при отрицательной.
Вероятно, Вселенная так близка к «водоразделу», что, обсуждая её дальнейшую судьбу, приходится рассматривать как открытый, так и замкнутый варианты.
Для начала предположим, что Вселенная замкнута. В таком случае в течение 40-50 миллиардов лет ничего существенного не произойдёт. По мере увеличения размеров Вселенной галактики будут всё дальше разбегаться друг от друга, пока в какой-то момент самые дальние из них не остановятся и Вселенная не начнёт сжиматься. На смену красному смещению спектральных линий придёт синее. К моменту максимального расширения большинство звёзд в галактиках погаснет и останутся в основном небольшие звёзды, белые карлики и нейтронные звёзды, а также чёрные дыры, окружённые роем частиц – в большинстве своём фотонов и нейтронов. Наконец, через примерно 100 миллиардов лет начнут сливаться воедино галактические скопления; отдельные объекты сначала будут сталкиваться очень редко, но со временем Вселенная превратится в однородное «море» скоплений. Затем начнут сливаться отдельные галактики, и в конце концов Вселенная будет представлять собой однородное распределение звёзд и других подобных объектов.
В течение всего коллапса в результате аккреции и соударений станут образовываться и расти чёрные дыры. Будет повышаться температура фонового излучения; в конце концов она почти достигнет температуры поверхности Солнца и начнётся процесс испарения звёзд. Перемещаясь на фоне ослепительно яркого неба, они подобно кометам будут оставлять за собой состоящий из паров след. Но вскоре всё заполнит рассеянный туман и свет звёзд померкнет. Вселенная потеряет прозрачность, как сразу же после Большого взрыва. (В гл. 6 мы видели, что ранняя Вселенная была непрозрачной, пока её температура не упала до примерно 3000 K; тогда свет стал распространяться без помех.)
Читать дальшеИнтервал:
Закладка: