Барри Паркер - Мечта Эйнштейна. В поисках единой теории строения
- Название:Мечта Эйнштейна. В поисках единой теории строения
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Барри Паркер - Мечта Эйнштейна. В поисках единой теории строения краткое содержание
Barry Parker. Einstein's Dream. The search for a unified theory of the Universe.
В популярной форме изложены современные представления об эволюции Вселенной, рассказано о попытках построения единой теории поля, объединения общей теории относительности и квантовой теории. Без привлечения математического аппарата автор доступно излагает основы теории чёрных дыр, квантовой хромодинамики, супергравитации и суперструн; подробно останавливается на нерешённых проблемах космологии. Попутно рассказывается об учёных, работавших в космологии и смежных областях, и их основных достижениях.
Для читателей, интересующихся современными представлениями и гипотезами о строении и эволюции физического мира.
Мечта Эйнштейна. В поисках единой теории строения - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Одно время считалось, что электрон, протон и большинство других частиц элементарны, т.е. фундаментальны и не состоят из более простых частей. Но постепенно этих так называемых элементарных частиц набралось столько, что учёные стали задумываться, все ли они действительно элементарны. И вообще, что означает слово «элементарный»? Можно сказать, что частица действительно элементарна, если она не имеет более глубокой структуры, но даже при таком упрощённом и расплывчатом определении сразу же возникают трудности. Вернёмся ненадолго к электрону. Предположим, что он состоит из более фундаментальных частиц, но тут же возникает вопрос, а из чего состоят они? Ответив на него, придётся решать, что внутри частиц следующего уровня, и так до бесконечности. Где-то этому процессу нужно положить конец. Можно, например, рассматривать как элементарную такую частицу, которая не имеет размеров и, следовательно, структуры, т.е. является по сути точечной. Ясно, что у не имеющей размеров точки не может быть внутренней структуры. Принято считать, что электрон – точечная частица; ни один эксперимент пока не позволил зафиксировать линейные размеры электрона.
С протоном дело обстоит иначе. Из экспериментов следует, что он имеет радиус порядка 10 -13см и, по-видимому, обладает внутренней структурой. В 1968 году на линейном ускорителе в Станфорде протоны подвергались бомбардировке высокоэнергетичными электронами. Из экспериментов следовало, что заряд распределён в протоне неоднородно, так, как будто внутри есть крошечные субчастицы. Сейчас их называют кварками. Принято считать, что семейство кварков и семейство электрона (вместе они носят название лептонов) являются действительно элементарными частицами.
А д р о н ы:
Барионы (тяжёлые частицы:p, n)
Мезоны (частицы промежуточной массы)
( Барионы и мезоны состоят из кварков )
Л е п т о н ы:
(лёгкие частицы: e -, ?, ?)
( Каждому типу лептонов соответствует частица, которая называется нейтрино и, как считают, не имеет массы )
Фундаментальные частицы: e -– электрон, p – протон, n – нейтрон, ? – мюон, ? – тау-частица
Раньше мы видели, что помимо электрона есть ещё два других лептона – мюон и тау-частица; с каждым из них связано соответствующее нейтрино. Протон же относится к адронам, которые, в свою очередь, делятся на барионы и мезоны. Частицы этих семейств не элементарны; они состоят из кварков.
Все перечисленные частицы взаимодействуют друг с другом посредством полей. В предыдущей главе шла речь об электрическом и магнитном полях и о том, как Максвелл показал, что вместе они образуют электромагнитное поле. Но что конкретно имеется в виду под словом «поле»? В самом простом виде – это некая величина, определённая в каждой точке пространства и времени. Это, по сути, удобный способ описания переноса сил между частицами (или вообще между любыми объектами).
Простейший тип поля – скалярное поле, в котором каждой точке пространства соответствует лишь один параметр. Хороший пример поля такого типа – область с определённой в каждой точке температурой (отметим, что это не силовое поле). Несколько сложнее векторное поле; для него в каждой точке определяется не только его интенсивность, но и направление силовых линий.

Взаимодействие двух частиц, проходящих на небольшом расстоянии друг от друга (верхний рисунок), и упрощённое представление взаимодействия, изображённого выше (нижний рисунок). Дуги соответствуют электрическому полю
Долгое время считалось, что электромагнитные взаимодействия можно представлять в виде дальнодействующих сил. Электрон, например, проходя мимо другого электрона, «ощущает» его электрическое поле и отклоняется им. Теперь это называется классическим подходом. Подход квантовой теории поля иной – считается, что взаимодействие осуществляется через частицы-переносчики. В случае электромагнитного поля такой частицей является фотон. Проходя на небольшом расстоянии друг от друга, электроны обмениваются фотонами, и этот обмен вызывает их отклонение. Аналогично, между протоном и нейтроном, проходящими на очень небольших расстояниях друг от друга, возникает очень сильное взаимодействие. В этом случае частица-переносчик не та, что в случае двух электронов.
Короче говоря, в природе имеются две фундаментальные сущности – частицы и поля – и нас интересует, как они взаимодействуют. Именно этому посвящена квантовая теория поля. Первая попытка рассмотреть взаимодействия с квантовой точки зрения была предпринята вскоре после создания (в 1926 году) квантовой механики. И тут же возникли трудности – в теории 1926 года можно было квантовать частицы, но не поля.
Первая теория, допускавшая квантование как полей, так и частиц, была создана в 1927 году Полем Дираком. Он показал, как описать испускание и поглощение фотонов частицами с точки зрения квантовой механики. Но его теория позволяла преодолеть не все трудности – она относилась только к нерелятивистским частицам, а как известно, многие частицы движутся в ходе взаимодействий со скоростями, близкими к световым. Поэтому нужна была релятивистская теория.
И снова отличился Дирак. Он подставил вместо нерелятивистского релятивистское выражение для энергии и вывел уравнение движения. Вскоре он обнаружил, что его уравнение можно применять только к частицам с определённым спином. Известно, что спин элементарных частиц не может иметь произвольное значение; согласно квантовой теории, он квантован и, следовательно, имеет строго определённые значения. Спин электрона, например, принимает только два значения: +1/2 (часто спин +1/2 называют спином, направленным вверх, а спин -1/2 – направленным вниз). Теория Дирака применима только к частицам со спином 1/2, т.е. это теория электрона. Она была первой из всех теорий, которая в явном виде предсказывала наличие у частиц спина. Но что ещё важнее, она легла в основу теории взаимодействия света и элементарных частиц.
Теория была удачной, хотя разрешала не все трудности. Из неё следовало, что электрон может пребывать в любом из четырёх состояний: иметь один из двух возможных спинов и одно из двух энергетических состояний – с положительной и отрицательной энергиями. Трудность вызывали состояния с отрицательной энергией. Если бы они действительно существовали, атомы были бы нестабильны. Чтобы понять, почему, достаточно обратиться к рисунку, на котором показано, какую энергию может иметь электрон, – это схема энергетических уровней. Согласно теории, на каждом уровне могут находиться только два электрона с разными спинами, и если ниже этого уровня есть вакансия, то её займёт один из электронов; при этом произойдёт испускание фотона.
Читать дальшеИнтервал:
Закладка: