Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики

Тут можно читать онлайн Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Едиториал УРСС, год 2003. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Новый ум короля: О компьютерах, мышлении и законах физики
  • Автор:
  • Жанр:
  • Издательство:
    Едиториал УРСС
  • Год:
    2003
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.8/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики краткое содержание

Новый ум короля: О компьютерах, мышлении и законах физики - описание и краткое содержание, автор Роджер Пенроуз, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Монография известного физика и математика Роджера Пенроуза посвящена изучению проблемы искусственного интеллекта на основе всестороннего анализа достижений современных наук. Возможно ли моделирование разума? Чтобы найти ответ на этот вопрос, Пенроуз обсуждает широчайший круг явлений: алгоритмизацию математического мышления, машины Тьюринга, теорию сложности, теорему Геделя, телепортацию материи, парадоксы квантовой физики, энтропию, рождение Вселенной, черные дыры, строение мозга и многое другое.

Книга вызовет несомненный интерес как у специалистов гуманитарных и естественнонаучных дисциплин, так и у широкого круга читателей.[1]

Новый ум короля: О компьютерах, мышлении и законах физики - читать онлайн бесплатно полную версию (весь текст целиком)

Новый ум короля: О компьютерах, мышлении и законах физики - читать книгу онлайн бесплатно, автор Роджер Пенроуз
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

«Плиточные» структуры и квазикристаллы

Теперь я отойду от масштабных обсуждений последних нескольких разделов и сосредоточусь на обсуждении вопросов, которые, хотя и являются до некоторой степени дискуссионными, все же гораздо более научны и «осязаемы». Возможно, вначале эти рассуждения покажутся отклонением от темы, однако, их важность для нас станет очевидной уже в следующем разделе.

Вспомним примеры «плиточных» замощений, изображенные на рис. 4.12 (гл.4 «Некоторые примеры нерекурсивной математики»). Эти образцы интересны потому, что они «почти» нарушают общепринятую математическую теорему о кристаллических решетках, которая утверждает, что для кристаллических решеток возможны только симметрии с осью второго, третьего, четвертого и шестого порядков. Под кристаллической решеткой я подразумеваю дискретную систему точек, которая обладает трансляционной симметрией . Это означает, что можно определенным образом перемещать решетку без вращения так, чтобы она переходила сама в себя (иными словами, в результате такого сдвига она не изменяется) — а, значит, у такой решетки будет существовать параллелограмм периодов (см. рис. 4.8). Примеры «плиточных» замощений с этими разрешенными теорией типами вращательной симметрии показаны на рис. 10.2.

Рис 102Периодические плиточные замощения с разными типами симметрии где в - фото 229

Рис. 10.2.Периодические плиточные замощения с разными типами симметрии (где в каждом случае центр симметрии совпадает с центром плитки): 1) с осью второго порядка; 2) с осью третьего порядка; 3) с осью четвертого порядка; 4) с осью шестого порядка

С другой стороны, покрытия на рис. 4.12, как и изображенные на рис. 10.3

Рис 103Квазипериодическая плиточная структура следует заметить что она - фото 230

Рис. 10.3.Квазипериодическая плиточная структура (следует заметить, что она образована посредством объединения образцов с рис. 4.11) с кристаллографически «невозможной» квазисимметрией с осью пятого порядка

(которые, в сущности, представляют собой замощения, образованные соединением решеток, изображенных на рис. 4.11 (гл.4 «Некоторые примеры нерекурсивной математики»), почти имеют трансляционную симметрию и почти обладают симметрией вращения с осью пятого порядка, где «почти» означает, что можно найти такие движения решеток (соответственно, трансляционные и вращательные), при которых решетка переходит сама в себя с любой наперед заданной точностью (кроме 100 %-ной). Не стоит углубляться, что точно означает это утверждение. Единственное, что нам здесь важно — это если в нашем распоряжении есть вещество, в котором все атомы расположены в узлах кристаллической решетки с подобной структурой, то оно будет выглядеть, как кристалл, обладая при этом запрещенной симметрией с осью пятого порядка!

В декабре 1984 году израильский физик Дэни Шехтман, работавший вместе с коллегами в Национальном бюро стандартов в США, в Вашингтоне, объявил об открытии фазы алюминиево-марганцевого сплава, который был похож на кристаллоподобное вещество — теперь называемое квазикристаллом — с осью пятого порядка. На самом деле, у этого квазикристаллического вещества наблюдалась симметрия не только на плоскости, но и в трех измерениях — так что в итоге получалась запрещенная икосаэдральная симметрия (Шехтман и др. [1984]). (Икосаэдральный трехмерный аналог моей плоской «плиточной» структуры с осью пятого порядка был открыт Робертом Амманном в 1975 году; см. Гарднер [1989].) Сплавы Шехтмана образовывали только крошечные микроскопические квазикристаллы, достигавшие примерно 10 -3 мм в поперечном сечении, но позднее были найдены другие квазикристаллические вещества, в частности — алюминиево-литиево-медный сплав, у которого икосаэдрально симметричные образования могут вырастать до размеров порядка миллиметра, т. е. становятся вполне различимы невооруженным глазом (рис. 10.4).

Рис 104Квазикристалл сплав AL Li Сu с казалось бы невозможной - фото 231

Рис. 10.4.Квазикристалл (сплав ALLiСu) с, казалось бы, невозможной кристаллической симметрией. (Из Гэйл [1987].)

Замечательным свойством этих квазикристаллических «плиточных» структур является то, что процесс их составления имеет существенно нелокальный характер. Иными словами: при построении подобного покрытия необходимо время от времени проверять состояние кристаллической решетки на расстоянии многих и многих «атомов» от места сборки, чтобы избежать серьезных ошибок при соединении составных частей. (Это чем-то напоминает то почти «сознательное нащупывание», которое я связывал с естественным отбором.) Наличие такого свойства является одной из причин серьезных разногласий, возникающих сегодня в связи с вопросом о квазикристаллических структурах и их выращивании, так что было бы неразумно пытаться делать окончательные выводы до тех пор, пока не будут разрешены некоторые основополагающие проблемы. Тем не менее, никто не запрещает нам выдвигать предположения; поэтому я рискну высказать здесь свою собственную точку зрения. Во-первых, я полагаю, что некоторые из этих квазикристаллических веществ действительно имеют сложное внутреннее строение, и что расположение атомов в их структуре довольно точно повторяет строение тех плиточных структур, которыми я занимался. Во-вторых, отсюда я делаю (всего лишь гипотетическое) заключение о том, что их образование не может совершаться за счет последовательного добавления атомов, как это происходит в рамках классической картины роста кристаллов — но с необходимостью должна опираться на нелокальные и непременно квантово-механические принципы построения [224].

Механизм такого роста я представляю себе следующим образом: вместо присоединения отдельных атомов к постоянно движущейся линии роста (в случае классического роста кристаллов), происходит квантовая линейная суперпозиция большого числа различных альтернативных сочетаний присоединяющихся атомов (путем квантовой операции U). В самом деле, согласно квантовой механике, все именно так и должно (почти всегда) происходить! В каждый момент времени существует не одна возможная структура, но множество альтернативных расположений атомов в сложной линейной суперпозиции. Некоторые из этих структур вырастают в гораздо более крупные образования, так что в определенный момент различия между гравитационными полями альтернативных структур превзойдут «одногравитонный предел» (или его более подходящий в данном случае аналог; см. главу 8, «Когда происходит редукция вектора-состояния?»). На этой стадии одна из них — или, скорее, это снова будет суперпозиция, но уже в несколько урезанном виде — выделиться в качестве истинной структуры ( квантовая операция R). В этот процесс роста, сопровождающийся последовательным отказом от наименее «значимых» на каждом этапе альтернатив, будут вовлекаться все бо́льшее и бо́льшее количество исходного вещества, пока наконец не сформируется достаточно крупный квазикристалл.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Роджер Пенроуз читать все книги автора по порядку

Роджер Пенроуз - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Новый ум короля: О компьютерах, мышлении и законах физики отзывы


Отзывы читателей о книге Новый ум короля: О компьютерах, мышлении и законах физики, автор: Роджер Пенроуз. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x