Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики

Тут можно читать онлайн Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Едиториал УРСС, год 2003. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Новый ум короля: О компьютерах, мышлении и законах физики
  • Автор:
  • Жанр:
  • Издательство:
    Едиториал УРСС
  • Год:
    2003
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.8/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Роджер Пенроуз - Новый ум короля: О компьютерах, мышлении и законах физики краткое содержание

Новый ум короля: О компьютерах, мышлении и законах физики - описание и краткое содержание, автор Роджер Пенроуз, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Монография известного физика и математика Роджера Пенроуза посвящена изучению проблемы искусственного интеллекта на основе всестороннего анализа достижений современных наук. Возможно ли моделирование разума? Чтобы найти ответ на этот вопрос, Пенроуз обсуждает широчайший круг явлений: алгоритмизацию математического мышления, машины Тьюринга, теорию сложности, теорему Геделя, телепортацию материи, парадоксы квантовой физики, энтропию, рождение Вселенной, черные дыры, строение мозга и многое другое.

Книга вызовет несомненный интерес как у специалистов гуманитарных и естественнонаучных дисциплин, так и у широкого круга читателей.[1]

Новый ум короля: О компьютерах, мышлении и законах физики - читать онлайн бесплатно полную версию (весь текст целиком)

Новый ум короля: О компьютерах, мышлении и законах физики - читать книгу онлайн бесплатно, автор Роджер Пенроуз
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Сходным образом в терминах проблемы остановки машины Тьюринга можно перефразировать многие другие нерешенные математические проблемы. Примером такого рода проблем может служить так называемое предположение Гольдбаха: любое четное число, большее двух, может быть представлено в виде суммы двух простых чисел [52]). Процесс, с помощью которого можно установить, относится некоторое натуральное число к простым или нет, является алгоритмическим, поскольку достаточно проверить делимость данного числа на все числа, меньшие его, а это достигается с помощью конечного числа вычислительных операций. Мы можем придумать машину Тьюринга, которая перебирает четные числа 6, 8, 10, 12, 14…, пробуя все возможные способы разбиения их на пары нечетных чисел

6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7 = 5 +5,

12 = 5 + 7, 14 = 3 + 11=7 + 7…

и убеждаясь, что для каждого четного числа какое-то из разбиений образовано двумя простыми числами. (Очевидно, нам не надо проверять пары четных слагаемых, кроме 2 + 2, поскольку все простые числа за исключением 2 — нечетные.) Наша машина должна остановиться только в том случае, если она находит четное число, для которого ни одно из разбиений не является парой простых чисел. В этом случае мы получили бы контрпример к предположению Гольдбаха, т. е. нашли бы четное число, большее 2, которое не является суммой двух простых чисел. Следовательно, если бы мы могли установить, останавливается машина Тьюринга когда-нибудь или нет, то тем самым мы выяснили бы, справедливо предположение Гольдбаха или нет.

Возникает естественный вопрос: каким образом следует определять, остановится какая-то определенная машина Тьюринга (в которую введены конкретные начальные данные) или нет? Для многих машин Тьюринга ответить на этот вопрос нетрудно, но, как мы видели выше, иногда для ответа может потребоваться решение какой-нибудь до сих пор не решенной математической задачи. Так существует ли некая алгоритмическая процедура для решения общей проблемы — проблемы остановки — полностью механическим путем? Тьюринг показал, что такой процедуры на самом деле нет.

В сущности, его доказательство сводилось к следующему. Предположим, наоборот, что указанный алгоритм существует [53]. Тогда существует и некая машина Тьюринга Н, которая «решает», остановится ли в конце концов n -я машина Тьюринга, действуя на число m . Условимся, что результатом действия машины Нбудет лента с номером 0, если n -я машина не останавливается, и с номером 1в противоположном случае:

Здесь мы могли бы воспользоваться способом кодирования пары n m - фото 23

Здесь мы могли бы воспользоваться способом кодирования пары ( n , m ), использованным ранее для универсальной машины Тьюринга U. Однако это привело бы к проблеме технического характера, поскольку при некоторых n (например, n = 7) T n будет определена некорректно, и маркер 111101будет непригоден для отделения на ленте n от m . Чтобы избежать этой проблемы, будем полагать, что n представлено не в двоичной, а в расширенной двоичной форме, тогда как для m будет по-прежнему использоваться обычная двоичная запись. В этом случае комбинации 110будет достаточно для разделения n и m . Использование точки с запятой в обозначении Н( n ; m ) в отличие от запятой в обозначении универсальной машины U( n , m ) указывает на это различие в кодировании.

Представим себе теперь бесконечную таблицу, в которую включены окончательные результаты действий всех возможных машин Тьюринга на все возможные (различные) входные данные. В этой таблице N- й ряд представляет собой результаты вычислений n- й машины Тьюринга, полученные при ее работе последовательно с m = 0, 1, 2, 3, 4…:

Я немного сжульничал и не стал располагать машины Тьюринга по порядку их - фото 24

Я немного «сжульничал» и не стал располагать машины Тьюринга по порядку их действительных номеров. Если бы я так сделал, то получился бы список, начало которого выглядело бы слишком скучным, поскольку все машины при значениях n меньших 11 не дают ничего, кроме □, а для n = 11 мы имеем просто нули. Дабы сделать начало этой таблицы более интересным, я предположил, что мы использовали некую гораздо более эффективную систему кодирования. Фактически, я просто присвоил ячейкам более или менее произвольные значения, только чтобы дать вам общее представление о том, как может выглядеть эта таблица.

На самом деле нам не требуется, чтобы эта таблица была построена путем вычислений , скажем, с помощью некоторого алгоритма. (На самом деле, как мы увидим далее, такого алгоритма и не существует.) Достаточно просто представить себе, что каким-то образом истинный список попал в наше распоряжение, возможно, с помощью Бога! Если бы мы попытались получить эту таблицу с помощью вычислений, то именно символы □вызвали бы затруднения, поскольку мы не могли бы с уверенностью сказать, когда в той или иной ячейке должен быть помещен символ □— ведь соответствующие вычисления никогда не заканчиваются!

Тем не менее искомую таблицу можно , построить с помощью вычислительной процедуры, если использовать нашу гипотетическую машину Н, поскольку она могла бы определить, где на самом деле появляются значения □. Однако вместо этого мы используем машину Ндля того, чтобы избавиться от появления значений □в таблице, заменив их во всех случаях нулями. Это достигается за счет вычисления значения Н( n ; m ), предваряющего действие T n на m , после чего мы позволим T n производить соответствующие действия, только если H( n ; m ) = 1 (т. е. только тогда, когда вычисление T n (m) приводит к определенному результату), и будем просто записывать в соответствующую ячейку 0при Н( n ; m ) = 0 (т. е. если T n ( m ) = □). Мы можем записать эту новую процедуру, представляющую собой последовательное действие Н( n ; m ) и T(m), как

T n (m) х Н( n; m ).

(Здесь я использую общепринятую в математике договоренность о последовательности выполнения действий, согласно которой операция, записанная справа , должна выполняться первой . Обратите внимание, что в этом случае можно символически записать □х 0 = 0.)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Роджер Пенроуз читать все книги автора по порядку

Роджер Пенроуз - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Новый ум короля: О компьютерах, мышлении и законах физики отзывы


Отзывы читателей о книге Новый ум короля: О компьютерах, мышлении и законах физики, автор: Роджер Пенроуз. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x