Александр Петров - Гравитация. От хрустальных сфер до кротовых нор
- Название:Гравитация. От хрустальных сфер до кротовых нор
- Автор:
- Жанр:
- Издательство:Литагент «Век»bb4c9c45-fa84-11e2-88f2-002590591dd6
- Год:2013
- Город:Фрязино
- ISBN:978-5-85099-190-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Петров - Гравитация. От хрустальных сфер до кротовых нор краткое содержание
В книге рассказывается о развитии представлений о тяготении за всю историю науки. В описании современного состояния гравитационной теории основное внимание уделено общей теории относительности, но рассказано и о других теориях. Обсуждаются формирование и строение черных дыр, генерация и перспективы детектирования гравитационных волн, эволюция Вселенной, начиная с Большого взрыва и заканчивая современной эпохой и возможными сценариями будущего. Представлены варианты развития гравитационной науки, как теоретические, так и наблюдательные.
Гравитация. От хрустальных сфер до кротовых нор - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
G ab + Λ g ab = κ T ab .
Это не помогло – статическое космологическое решение этих уравнений существует, но это решение неустойчиво, следовательно, не может быть моделью реального мира. Тем не менее, понятие космологической постоянной оказалось востребованным, особенно в последнее время.
5. Координаты Леметра
В этом дополнении мы обсуждаем координаты для черной дыры Шварцшильда, свободные от дефектов на горизонте. Их предложил Леметр, как систему отсчета, сопутствующую свободно падающим наблюдателям. Смысл ее в том, что в каждую точку пространства помещается наблюдатель. Наблюдатели никак не взаимодействуют между собой, они лишь свободно падают к центру, формально представляя собой точки. Каждому наблюдателю приписываются три пространственных координаты, которые вместе образуют пространственные координаты всего пространства-времени. А собственное время каждого наблюдателя вместе определяет координатное время новой системы отсчета. Форма решения сохраняет сферическую симметрию, поэтому можно сказать, что Леметр сделал переход от шварцшильдовых координат t и r к координатам сопутствующих наблюдателей (сопутствующей системе отсчета) τ и R .

Рис. Д1. Пространство-время геометрии Шварцшильда в сопутствующих координатах Леметра
Мы не приводим форму решения Леметра, а вот диаграмма на рис. 8.2 в его координатах принимает форму, представленную на рис. Д1. Обсудим ее. Наклонные на рис. Д1 соответствуют вертикальным линиям постоянных значений координаты r на рисунке 8.2, включая линии горизонта r = r g и сингулярности r = 0. Вертикальные на рис. Д1 – мировые линии сопутствующих наблюдателей . Как видно, они без помех пересекают горизонт.
Проследим за формой световых конусов на рис. Д1. Вне горизонта наклон «лепестков» превосходит 45º, на горизонте он равен 45º, а под горизонтом становится все меньше: конусы сужаются при приближении к «центру». Поскольку распространение лучей света происходит как раз по направлению конусов, а материальных частиц – по мировым линиям внутри конусов, то ясно, что вне горизонта r = r g возможно движение с удалением от горизонта во внешнюю область. По достижении горизонта такое движение невозможно. Под горизонтом становится неизбежным движение к «центру».
6. Система отсчета ускоренных наблюдателей
После того как определены понятия пространства Минковского в главе 5, собственного времени в главе 7 и горизонта событий в главе 8, интересно обсудить пространство-время ускоренных наблюдателей. Пусть один из таких наблюдателей движется прямолинейно вдоль оси x в пространстве Минковского с постоянным ускорением c 2/ X в направлении x . Пусть таких наблюдателей много и их ускорения меняются от бесконечности до нуля, что соответствует изменению X от 0 до ∞.
На рис. Д2 на диаграмме пространства Минковского в лоренцевых координатах x и t изображены мировые линии таких ускоренных наблюдателей: каждому наблюдателю соответствует свое значение X. Чем больше ускорение наблюдателя, тем его мировая линия ближе к началу координат. Ускорение каждого из них направлено в сторону увеличения x. Поэтому изначально двигаясь к началу координат, они снижают скорость до нуля при t = 0, а затем движутся в обратном направлении.

Рис. Д2. Мировые линии ускоренных наблюдателей
Поскольку скорости этих наблюдателей не могут превысить световые, то их мировые линии ограничены световыми конусами: A —0 и 0 A +, они вместе образуют так называемый «угол Риндлера». Кроме того, угол Риндлера – это предельная мировая линия наблюдателя, ускорение которого стремится к бесконечности. Эти конусы имеют смысл горизонта событий. Конус A —0 является горизонтом событий прошлого – ускоренные наблюдатели никак не могут повлиять на события за этим горизонтом. Конус 0 A +является горизонтом событий будущего , поскольку ускоренным наблюдателям недоступны для наблюдения события за этим горизонтом. Этот горизонт аналогичен горизонту шварцшильдовой черной дыры, в чем легко убедиться, сравнив рис. Д2 с диаграммой в координатах Леметра на рис. Д1.
Точно так же, как была представлена пространственно-временная диаграмма для сопутствующих наблюдателей в координатах Леметра, можно представить пространственно-временную диаграмму для равномерно ускоренных наблюдателей. Для этого каждому такому наблюдателю сопоставляют свою пространственную координату со значением X. Тогда метрика пространства Минковского (вернее его части, заключенной в углу Ринд-лера), в координатах этих ускоренных наблюдателей принимает форму:
ds 2= ( X / X 0) 2 c 2 dT 2– dX 2– dY 2– dZ 2.
Здесь X 0– произвольный пространственный масштаб, позволяющий сохранить размерность, кроме того, для наблюдателя, у которого X = X 0, эта система является локально лоренцевой. Эти координаты введены американским физиком Вольфгангом Риндлером, и представлены на диаграмме на рис. Д3. Каждому ускоренному наблюдателю соответствует вертикальная прямая с соответствующим значением X. Вертикальная прямая X = 0 соответствует горизонту Риндлера. Если время T является координатным временем в системе Риндлера, то собственным временем для ускоренного наблюдателя является τ = ( g 00) 1/2 T = XT / X 0, как это было определено в главе 7.

Рис. ДЗ. Координаты Риндлера
Для ускоренного наблюдателя с параметром X 0собственное время совпадает с координатным. Собственное время ускоренных наблюдателей идет тем быстрее, чем больше X , и тем медленнее, чем меньше X . В этом проявляется сильный принцип эквивалентности (глава 6) – ускорение имитирует действие гравитационного поля, где ход часов замедляется тем сильнее, чем больше потенциал.
На горизонте собственное время «замораживается», в этом смысле ситуация аналогична поведению собственного времени для наблюдателей в пространстве-времени шварцшильдовой черной дыры. Если мы проследим за формой светового конуса, то для наблюдателя X 0его «лепестки» наклонены под «стандартным» углом 45° (это как раз потому, что для него система Риндлера оказалась локально лоренцевой). Для больших X угол наклона «лепестков» увеличивается, для меньших X – уменьшается. На горизонте «лепестки» световых конусов вообще слипаются, точно также, как на горизонте на диаграмме Шварцшильда, см. рис. 8.2. Горизонт в метрике Риндлера представляет лишь координатную особенность, как и горизонт в координатах Шварцшильда. Но поскольку система ускоренных наблюдателей – это система в пространстве Минковского, то в отличие от решения Шварцшильда, «решение Риндлера» не имеет истинной сингулярности.
Читать дальшеИнтервал:
Закладка: