Джим Бэгготт - Бозон Хиггса. От научной идеи до открытия «частицы Бога»

Тут можно читать онлайн Джим Бэгготт - Бозон Хиггса. От научной идеи до открытия «частицы Бога» - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Литагент «Центрполиграф»a8b439f2-3900-11e0-8c7e-ec5afce481d9, год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Бозон Хиггса. От научной идеи до открытия «частицы Бога»
  • Автор:
  • Жанр:
  • Издательство:
    Литагент «Центрполиграф»a8b439f2-3900-11e0-8c7e-ec5afce481d9
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-227-05450-0
  • Рейтинг:
    3.8/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Джим Бэгготт - Бозон Хиггса. От научной идеи до открытия «частицы Бога» краткое содержание

Бозон Хиггса. От научной идеи до открытия «частицы Бога» - описание и краткое содержание, автор Джим Бэгготт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Бозон Хиггса. От научной идеи до открытия «частицы Бога» - читать онлайн бесплатно ознакомительный отрывок

Бозон Хиггса. От научной идеи до открытия «частицы Бога» - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Джим Бэгготт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ферми пришел к выводу, что взаимодействие между частицами, участвующими в бета-распаде, примерно в 10 миллиардов раз слабее электромагнитных взаимодействий между заряженными частицами. Оно действительно слабое, но все же имеет некоторые далекоидущие следствия. Из-за слабого взаимодействия нейтроны внутренне нестабильны. Нейтрон, движущийся в свободном пространстве, распадается всего через 18 минут. Это необычное поведение для частицы, считающейся фундаментальной или элементарной [37].

Конечно, прибегать к неизвестной силе природы, чтобы объяснить тип взаимодействия, – это было слишком. Но когда экспериментаторы стали внимательно просматривать «зоопарк» новых элементарных частиц, которые стали обнаруживаться среди обломков высокоэнергетических столкновений, появились свидетельства существования других видов частиц, восприимчивых к слабому взаимодействию.

В 1930-х ученому, который хотел изучать столкновения высокоэнергетических частиц, нужно было забраться на гору. Космические лучи – потоки частиц высоких энергий, приходящих из космоса, – непрерывно заливают верхние слои атмосферы. Некоторые частицы ультравысокой энергии, из которых состоят лучи, могут проникать в нижние слоя атмосферы до уровня горных вершин, где можно изучать их столкновения. Такие исследования зависят от случайного обнаружения частиц, и потому любые два события всегда имеют неодинаковые условия.

Американский физик Карл Андерсон открыл позитрон Дирака в 1932 году. Четыре года спустя он и его соотечественник Сет Неддермейер погрузили свой детектор элементарных частиц на грузовик и отправились на вершину Пайкс-Пик в Скалистых горах, примерно в 10 милях на запад от Колорадо-Спрингс [38]. В следах космических лучей физики обнаружили еще одну новую частицу. Эта частица вела себя, как электрон, но оказалось, что магнитное поле отклоняет ее гораздо меньше.

Частица отклонялась медленнее, чем электрон, и резче, чем протон на аналогичной скорости (в противоположном направлении). Физикам не осталось ничего иного, кроме как заключить, что это новый «тяжелый» электрон с массой примерно в 200 раз больше обычного электрона. Это не мог быть протон, так как масса протона примерно в 2 тысячи раз больше массы электрона [39].

Новую частицу сначала назвали мезотроном, а позднее сократили до мезона. Это было неприятное открытие. Тяжелый вариант электрона? Он не укладывался ни в одну теорию или представление о том, как должны быть организованы фундаментальные частицы природы.

В возмущении американский физик галицийского происхождения Исидор Раби хотел знать: «Кто это при казал?» [40]Уиллис Лэмб в своей Нобелевской лекции 1955 года отозвался в таком же раздраженном духе, сказав: «…Раньше тот, кто находил новую элементарную частицу, получал в награду Нобелевскую премию, но теперь такие открытия должны наказываться штрафом в 10 тысяч долларов» [41].

В 1947 году на вершине Миди-де-Бигор в Французских Пиренеях физик Бристольского университета Сесил Пауэлл со своей командой обнаружил в космических лучах еще одну новую частицу. Новая частица имела чуть большую массу, чем мезон, и была в 273 раза массивнее электрона. Она наблюдалась в положительно и отрицательно заряженных вариантах, а позднее и в нейтральных.

У физиков стали заканчиваться названия. Мезон переименовали в мю-мезон, впоследствии сокращенный до мюон [42]. Новую частицу назвали пи-мезон (пион). С усовершенствованием техники обнаружения частиц в космических лучах разверзлись хляби небесные. За пионом тут же последовали положительный и отрицательный K-мезон (каон) и нейтральная лямбда-частица. Новые названия посыпались как из рога изобилия. Отвечая на вопрос одного молодого физика, Ферми заметил: «Молодой человек, если бы я был в состоянии запомнить названия всех частиц, я пошел бы в ботаники» [43].

Каоны и лямбда-частицы вели себя довольно странно. Они встречались во множестве, что было признаком сильного взаимодействия. Они часто возникали парами, которые образовывали характерные V-образные следы. Затем они продолжали путь и распадались. Их распад занимал гораздо больше времени, чем возникновение, и это позволяло предположить, что, хотя частицы возникают благодаря сильному взаимодействию, их формами распада управляет гораздо более слабое взаимодействие, такое же, по сути дела, которое управляет радиоактивным бета-распадом.

Изоспин не мог объяснить странное поведение каонов и лямбд. Казалось, будто эти новые частицы обладают каким-то дополнительным, до тех пор неизвестным свойством.

Американский физик Марри Гелл-Манн терялся в догадках. Он понял, что может объяснить поведение новых частиц при помощи изоспина, если принять, что изоспины по какой-то причине «сдвигаются» на единицу. Это не имело никакого смысла с точки зрения физики, поэтому, чтобы объяснить сдвиг, он предложил новое свойство, которое впоследствии назвали странностью [44] . Позднее он обессмертил термин цитатой из Фрэнсиса Бэкона: «Не бы вает великой красоты без некоторой странности в пропорциях» [45].

Что бы это ни было, утверждал Гелл-Манн, странность, подобно изоспину, сохраняется в сильном взаимодействии. В сильном взаимодействии с участием обычных (то есть не странных) частиц возникновение странной частицы с странностью +1 должно сопровождаться еще одной странной частицей со странностью –1, так чтобы общая странность сохранялась. Вот почему частицы обычно встречались парами.

Сохранение странности также объясняло, почему странные частицы так долго распадались. Сразу после возникновения преобразование каждой странной частицы назад в обычную было невозможно через быстро действующее сильное взаимодействие, так как это потребовало бы изменения странности (с +1 или –1 до 0). Поэтому странные частицы не распадались довольно долго, так как на них действовало слабое взаимодействие, которое не соблюдает сохранение странности.

И никто не знал почему.

В своей эпохальной работе о бета-радиоактивности Ферми провел аналогию между слабым взаимодействием и электромагнетизмом. Он сделал примерный подсчет относительных сил, которые участвуют во взаимодействиях, использовав массу электрона в качестве критерия. В 1941 году Джулиан Швингер задумался, каковы были бы последствия, если бы Ферми допустил, что слабое взаимодействие переносит гораздо, гораздо более крупная частица. Швингер подсчитал, что если бы эта частица была в несколько сот раз массивнее протона, то слабое взаимодействие и электромагнитное взаимодействие фактически могли быть одинаковыми. Это была первая подсказка, что слабое и электромагнитное взаимодействия удастся объединить в одно электрослабое.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джим Бэгготт читать все книги автора по порядку

Джим Бэгготт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Бозон Хиггса. От научной идеи до открытия «частицы Бога» отзывы


Отзывы читателей о книге Бозон Хиггса. От научной идеи до открытия «частицы Бога», автор: Джим Бэгготт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x