Джим Бэгготт - Бозон Хиггса. От научной идеи до открытия «частицы Бога»

Тут можно читать онлайн Джим Бэгготт - Бозон Хиггса. От научной идеи до открытия «частицы Бога» - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Литагент «Центрполиграф»a8b439f2-3900-11e0-8c7e-ec5afce481d9, год 2014. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Бозон Хиггса. От научной идеи до открытия «частицы Бога»
  • Автор:
  • Жанр:
  • Издательство:
    Литагент «Центрполиграф»a8b439f2-3900-11e0-8c7e-ec5afce481d9
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-227-05450-0
  • Рейтинг:
    3.8/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Джим Бэгготт - Бозон Хиггса. От научной идеи до открытия «частицы Бога» краткое содержание

Бозон Хиггса. От научной идеи до открытия «частицы Бога» - описание и краткое содержание, автор Джим Бэгготт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Бозон Хиггса. От научной идеи до открытия «частицы Бога» - читать онлайн бесплатно ознакомительный отрывок

Бозон Хиггса. От научной идеи до открытия «частицы Бога» - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Джим Бэгготт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Многие физики были убеждены, что они очень близки к эпохальному открытию, и то, как повел себя Майани в такой ситуации, у них оставило чувство горечи. Однако, когда они скрупулезно проанализировали события, вероятность, что они действительно свидетельствовали о бозоне Хиггса, стала еще меньше. «Я понимаю раздражение и печаль тех, кому казалось, что бозон Хиггса уже у них в руках, – писал Майани в феврале 2001 года, – и кто опасается, что пройдут годы, прежде чем их труд найдет подтверждение» [147].

Единственный вывод, который могли сделать физики, – это что масса бозона Хиггса должна быть больше 114,4 ГэВ, вероятно около 115,6 ГэВ.

После открытия истинного кварка и тау-нейтрино коллекция элементарных частиц, составляющих Стандартную модель, была собрана полностью. Физики оказались в беспрецедентной ситуации, когда у них не осталось экспериментальных данных, которые не укладывались бы в предсказания теорий. И тем не менее у теоретиков было еще много работы.

Большие недостатки Стандартной модели бросались в глаза с самого момента ее создания. Модель должна учитывать весьма настораживающее количество фундаментальных или элементарных частиц. Эти частицы соединяются в структуре, для которой требуются двадцать параметров, но их нельзя вывести из теории, а можно только измерять. Из этих двадцати параметров двенадцать должны точно указывать массы кварков и лептонов, а три – силу взаимодействия между ними.

Вдобавок есть проблема и с массой самого бозона Хиггса. Бозон приобретает массу через так называемые петлевые поправки, которые учитывают его взаимодействия с виртуальными частицами. Петлевые поправки с участием более тяжелых частиц, таких как виртуальный истинный кварк, означают, что бозон Хиггса гораздо массивнее, чем должен быть, чтобы нарушить электрослабую симметрию так, как от него требует теория. В итоге теория предсказывает гораздо более слабое взаимодействие, чем оно есть на самом деле. Это называют проблемой иерархии.

К тому же, несмотря на в общем успешное объединение слабого и электромагнитного взаимодействия, осуществленное Глэшоу, Вайнбергом и Саламом, теория структуры SU(3) × SU(2) × U(1) поля Янга – Миллса, составляющая Стандартную модель, отнюдь не является абсолютно единой теорией фундаментальных взаимодействий.

В отсутствие экспериментальных указаний у теоретиков не осталось выбора, кроме как руководствоваться красотой и следовать за своей интуицией в поиске теорий, которые бы вышли за рамки Стандартной модели и объяснили законы природы на еще более фундаментальном уровне.

Помимо теорий великого объединения типа теории Джорджи – Глэшоу, существует еще один подход к объединению, который в начале 1970-х предложили теоретики в Советском Союзе и независимо открыли в 1973 году физики ЦЕРНа Юлиус Весс и Бруно Зумино. Он называется суперсимметрией. Есть много разновидностей теорий суперсимметрии, но одна из самых простых, впервые предложенная в 1981 году и названная минимальной суперсимметричной Стандартной моделью (МССМ), включает в себя «супермультиплеты», соединяющие частицы материи (фермионы) с бозонами, частицами – переносчиками взаимодействия.

В теориях суперсимметрии уравнения инвариантны относительно замены фермионов на бозоны и наоборот. Сами разнообразные свойства и поведение фермионов и бозонов в физике, которые мы наблюдаем сегодня, должны в таком случае быть следствием нарушения или скрытия этой суперсимметрии.

Одним из следствий этой суперсимметрии более высокого порядка является увеличение числа частиц. На каждый фермион теория предсказывает соответствующий суперсимметричный фермион (который называется сфермион), который на самом деле бозон. Иными словами, на каждую частицу Стандартной модели теория требует существования массивного суперсимметричного партнера со спином, отличающимся на 1/ 2. Партнер электрона называется сэлектрон (сокращение от «скалярный электрон»). У каждого кварка есть партнер в виде соответствующего скварка.

Кроме того, у каждого бозона Стандартной модели есть соответствующий симметричный бозон, который называется бозино, и на самом деле он фермион. Суперсимметричные партнеры фотона и частиц W и Z называются фотино, вино и зино.

Одно из преимуществ МССМ заключается в том, что она решает проблему бозона Хиггса. В МССМ петлевые поправки, из-за которых раздувается масса бозона Хиггса, компенсируются отрицательными поправками, проистекающими из взаимодействий с участием виртуальных суперсимметричных частиц. Например, увеличение массы бозона Хиггса благодаря взаимодействию с виртуальным истинным кварком компенсируется взаимодействием с виртуальным истинным скварком. Эта компенсация стабилизирует массу Хиггса и, следовательно, слабое взаимодействие. Чтобы этот механизм работал, МССМ требуются пять бозонов Хиггса с разной массой. Три из них нейтральны, а два переносят электрический заряд.

МССМ устраняет и еще один недостаток Стандартной модели. Как показали Вайнберг, Джорджи и Куинн в 1974 го ду, сильное, слабое и электромагнитное взаимодействия Стандартной модели становятся почти равными на высоких энергиях. Однако они не становятся абсолютно равными, как можно было бы ожидать в полностью объединенной теории поля электроядерного взаимодействия. МССМ предсказывает, что силы трех взаимодействий сойдутся в одной точке (см. рис. 23).

Кроме того, суперсимметрия может решить давнишнюю проблему космологии. В 1934 году швейцарский астроном Фриц Цвикки обнаружил, что средняя масса галактик в скоплении Волос Вероники, вычисленная по их гравитационным эффектам, не соответствует средней массе, вычисленной по светимости галактик в ночном небе. Целых 90 процентов массы, необходимой для объяснения гравитационных эффектов, как будто отсутствовала или была невидима. Эту невидимую массу назвали темной материей.

Рис 23 а Если экстраполировать силы взаимодействий в Стандартной модели - фото 27 Рис 23 а Если экстраполировать силы взаимодействий в Стандартной модели - фото 28

Рис. 23 ( а ) Если экстраполировать силы взаимодействий в Стандартной модели, из этого следует уровень энергии (и время после Большого взрыва), при котором они одинаковы и объединены. Однако они не сливаются полностью в одной точке. ( b ) В минимальной суперсимметричной Стандартной модели (МССМ) дополнительные квантовые поля влияют на экстраполяцию, и взаимодействия сливаются

Проблема темной материи не ограничилась одним скоплением галактик. Темная материя – ключевой компонент современной Стандартной модели космологии Большого взрыва, модели Лямбда-CDM (сокращение от Cold Dark Matter, холодная темная материя). Последовательные наблюдения микроволнового фонового излучения, произведенные спутником COBE и в последнее время спутником WMAP, позволяют предположить, что темная материя составляет около 22 процентов массы-энергии Вселенной. Около 73 процентов – это темная энергия, связанная со всепроникающим энергетическим полем вакуума, и таким образом на долю «видимой» материи Вселенной – звезд, нейтрино и тяжелых элементов, то есть всего, что мы есть, и всего, что мы видим вокруг, – приходится меньше 5 процентов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джим Бэгготт читать все книги автора по порядку

Джим Бэгготт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Бозон Хиггса. От научной идеи до открытия «частицы Бога» отзывы


Отзывы читателей о книге Бозон Хиггса. От научной идеи до открытия «частицы Бога», автор: Джим Бэгготт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x