Ашот Григорьян - Механика от античности до наших дней
- Название:Механика от античности до наших дней
- Автор:
- Жанр:
- Издательство:Наука
- Год:1974
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ашот Григорьян - Механика от античности до наших дней краткое содержание
Книга состоит из очерков, популярно излагающих историю эволюции теоретической механики от античности до наших дней. Она включает очерки античной механики, механики средневекового Востока и Европы эпохи Возрождения, механики XVII — XX вв. Отдельные главы посвящены достижениям механики в России и СССР. В книге рассматриваются классические понятия массы, силы, импульса, скорости, ускорения и т. д.
Механика от античности до наших дней - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
или, как писал сам Эйлер, «для кривой, описываемой брошенным телом, сумма всех живых сил, находящихся в теле в отдельные моменты времени, будет наименьшей» {153} 153 Там же, стр. 575.
. Принцип наименьшего действия оказывается связанным с законом живых сил, а его применение ограничивается случаями, в которых силы имеют потенциал. Публично Эйлер признал первенство Мопертюи в открытии принципа наименьшего действия. На самом деле оба они пришли к своим результатам самостоятельно и одновременно. Но для дальнейшего развития вариационных принципов механики отправным пунктом стал именно принцип Эйлера, применимый к непрерывным движениям и дававший дифференциальные уравнения траекторий, между тем как принцип Мопертюи относится лишь к случаям конечных и мгновенных изменений скорости. Преимущество Эйлера в обосновании и применении принципа признавал сам Мопертюи. На протяжении 1746— 1749 гг. Эйлер написал еще несколько работ о фигурах равновесия гибкой нити, в которых принцип наименьшего действия получил применение к задачам, связанным с действием упругих сил. Больше он в этом направлении не работал, и новое продвижение вперед было достигнуто прежде всего Лагранжем.
Мы не будем останавливаться на шумном споре о принципе наименьшего действия, развернувшемся в середине XVIII в. Заметим лишь, что в этой дискуссии, начавшейся в связи с тем, что швейцарский ученый С. Кениг (1712—1757) подверг сомнению приоритет Мопертюи [27] Кениг утверждал, что идею принципа высказал еще Лейбниц.
, нашла яркое выражение идеологическая борьба сторонников детерминистической и материалистической картины мира с приверженцами телеологических и теологических концепций. Эйлер здесь поддерживал Мопертюи; на противоположной стороне стояли Вольтер, Даламбер и другие ученые [28] Подробнее об этом — в послесловии Л. С. Полака к сб. «Вариационные принципы механики», стр. 784 и ел.
. Положительным результатом спора явилось освобождение принципа наименьшего действия от метафизических привесков. В статье «Космология», напечатанной в четвертом томе знаменитой «Энциклопедии» в 1754 г., Даламбер, подводя итоги спору, писал, что принцип минимальности действия «сам по себе полезен для механики и мог бы облегчить разрешение некоторых проблем», особенно подчеркивая, что он «есть только математический принцип» {154} 154 «Вариационные принципы механики», стр. 114—115.
.
Берлинский период жизни Эйлера (1741—1766) отмечен высокой интенсивностью работы в области механики, особенно небесной механики, теории движения твердого тела и гидромеханики. История небесной механики представляет собой часть истории астрономии, а исследования Эйлера в этой области явились недавно предметом специального подробного анализа {155} 155 См. М. Ф. Субботин. Астрономические работы Леонарда Эйлера. — В кн.: Леонард Эйлер. Сборник статей в честь 250-ле-тия со дня рождения, представленных Академии наук СССР. М., Изд-во АН СССР, 1958.
. Мы скажем лишь несколько слов о роли Эйлера в утверждении закона всемирного тяготения Ньютона.
Одной из трудностей, которые должна была преодолеть механика Ньютона, была проблема фигуры Земли. Не меньшие трудности возникали при изучении движения планет Солнечной системы, и прежде всего Луны. Основанные на законе тяготения расчеты Клеро и Даламбера, произведенные в 1745 г., дали для апогея лунной орбиты период обращения в 18 лет — величину, вдвое превосходившую результаты наблюдений. Это ставило под удар всю систему Ньютона. Многие, в том числе Клеро и Эйлер, склонялись к тому, что необходимо внести поправки в самый закон притяжения. Но в 1749 г. Клеро сообщил Эйлеру, что обнаружил недостаточность метода, применявшегося в прежних вычислениях. Ранее Клеро ограничился первым приближением решения соответствующих дифференциальных уравнений, и этим-то объяснялось указанное расхождение. Между тем привлечение второго приближения, по утверждению Клеро, дает численный результат, согласный с наблюдаемым. Этим же Клеро объяснял расхождение с действительностью данных, полученных Эйлером. В письме от 10 июля 1749 г. Клеро писал Эйлеру: «Я предполагаю, что Вы не пришли к правильному результату потому, что пренебрегли в своем вычислении при интегрировании первых дифференцио-дифференциальных уравнений (т. е. уравнений второго порядка. — А. Г.) членами, происходящими от квадратов возмущающих сил. По крайней мере, именно после того, как я учел эти члены, я и получил почти действительное движение апогея» {156} 156 Цит. по ст.: А. 77. Юшкевич и Э. Винтер. О переписке Леонарда Эйлера с Петербургской академией наук в 1741—1757 гг. — Труды Института истории естествознания и техники, т. 34. М., Изд-во АН СССР, I960, стр. 456.
.
Эйлер не был убежден доводами Клеро и для решения вопроса посоветовал Петербургской академии объявить конкурс на тему: «Согласуются или же нет все неравенства, наблюдаемые в движении Луны, с теорией Ньютона? И какова истинная теория этих неравенств, которая позволила бы точно определить местоположение Луны для любого времени?» Конкурс был объявлен в конце 1749 г., Эйлер вошел в состав жюри. Клеро представил на конкурс свое сочинение. Ознакомившись с ним, Эйлер с полным беспристрастием отказался от своей прежней точки зрения. Он оценил труд Клеро как великолепный, и в 1751 г. премия была присуждена французскому ученому за «Теорию Луны, выведенную из одного только принципа притяжения, обратно пропорционального квадратам расстояний».
Но Эйлер не ограничился разбором теории Клеро. Чтобы проверить ее, он дополнительно исследовал вопрос с помощью другого, собственного, метода, который изложил в «Теории движения Луны, выявляющей все ее неравенства», опубликованной в Берлине в 1753 г.
Так Клеро и Эйлер утвердили теорию тяготения Ньютона {157} 157 Подробнее — Н. И. Идельсон. Закон всемирного тяготения и теория движения Луны. — В кн.: Исаак Ньютон. 1642—1727. Сборник статей к трехсотлетию со дня рождения. М.—Л., 1943
. Расчетные приемы Эйлера получили и практическое применение. На основе его формул немецкий астроном И.-Т. Майер (1723—1762) составил таблицы видимого движения Луны, которые были вскоре использованы в справочниках для мореплавателей для определения долготы в открытом море по угловым расстояниям Луны от Солнца и еще некоторых удобных для наблюдения ярких светил. Такой способ определения долготы корабля применялся на практике более ста лет наряду с изобретенным в 1761 г. Т. Гаррисоном (1693—1776) морским хронометром. Тогда же английский парламент выдал установленную в 1714 г. премию (за способ определения долготы в море с точностью 1/ 2градуса): 20 000 ф. ст. — Гаррисону, 3000 ф. ст. — наследникам скончавшегося Майера и 300 ф. ст. — Эйлеру, выведшему формулы, использованные при вычислении майеровских лунных таблиц.
Интервал:
Закладка: