Ашот Григорьян - Механика от античности до наших дней

Тут можно читать онлайн Ашот Григорьян - Механика от античности до наших дней - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Наука, год 1974. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Механика от античности до наших дней
  • Автор:
  • Жанр:
  • Издательство:
    Наука
  • Год:
    1974
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    3.5/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ашот Григорьян - Механика от античности до наших дней краткое содержание

Механика от античности до наших дней - описание и краткое содержание, автор Ашот Григорьян, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга состоит из очерков, популярно излагающих историю эволюции теоретической механики от античности до наших дней. Она включает очерки античной механики, механики средневекового Востока и Европы эпохи Возрождения, механики XVII — XX вв. Отдельные главы посвящены достижениям механики в России и СССР. В книге рассматриваются классические понятия массы, силы, импульса, скорости, ускорения и т. д.

Механика от античности до наших дней - читать онлайн бесплатно полную версию (весь текст целиком)

Механика от античности до наших дней - читать книгу онлайн бесплатно, автор Ашот Григорьян
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Не останавливаясь на других работах Эйлера по небесной механике, в частности по движению планет, и на его позднейшей новой теории Луны, заметим еще, что в них содержатся и важные результаты по общей механике, специально по динамике системы точек. Эти результаты были подытожены вместе с его открытиями по теории движения твердого тела в большом труде, законченном в 1760 и опубликованном в 1765 г.

Своему труду по динамике твердого тела — «Трактату о движении твердых тел» — Эйлер предпосылает большое введение из шести глав, в котором вновь излагает динамику точки. Это позволяет читателю не обращаться к «Механике», вышедшей почти тридцатью годами ранее. В отличие от прежнего изложения Эйлер приводит уравнения движения точки, пользуясь проектированием на оси неподвижных прямоугольных координат. Следующий за введением «Трактат о движении твердых тел» состоит из 19 глав. В основу положен принцип Даламбера, высказанный французским математиком в «Трактате о динамике» (1743). Принцип Даламбера, сводящий задачи динамики несвободной системы к рассмотрению равновесия некоторой системы действительных и фиктивных сил, Эйлер формулирует в первой главе своего «Трактата». Он вводит понятие элементарной силы, приложенной к точке тела в любой момент его движения, как силы, которую следовало бы к ней приложить, чтобы, будучи свободной, она совершила то же самое движение. Принцип Даламбера выступает при этом как положение о равновесии между элементарными силами и данными внешними силами.

Коротко остановившись на поступательном движении твердого тела и введя понятие центра инерции, Эйлер переходит к рассмотрению вращения вокруг неподвижной оси и вокруг неподвижной точки. Здесь подробно разработан аппарат разнообразных формул для проекций мгновенной угловой скорости, углового ускорения на оси координат, используются так называемые углы Эйлера (впервые введенные им в 1748 г.). Далее изучены свойства момента инерции и вычислены моменты инерции ряда плоских и пространственных фигур. Главные оси определяются с помощью их экстремальных свойств (эллипсоид инерции еще отсутствует). В следующих главах разработана самая динамика твердого тела. Особый интерес представляет X глава, где рассмотрена задача о вращении твердого тяжелого тела вокруг его неподвижного центра тяжести при отсутствии внешних сил.

В двух следующих главах Эйлер решает задачу для случаев трех или двух равных главных моментов инерции. В случае попарно неравных моментов при отсутствии внешних сил он выражает закон движения через дуги конических сечений, т. е. через эллиптические интегралы, и рассматривает условия, при которых дело сводится к элементарным интегралам. Мы не будем останавливаться на дальнейшей истории этой основополагающей в теории гироскопа задачи, ставшей предметом изысканий многих ученых. Скажем лишь, что первый шаг вперед сделал вскоре Лагранж, давший решение для случая, когда два главных момента инерции равны, а центр тяжести тела лежит на оси третьего момента (в дифференциальные уравнения входят тогда дополнительные члены, зависящие от координат центра тяжести). Новые глубокие исследования проведены были лишь через сто лет С.В. Ковалевской.

В последних главах работы Эйлера по теории движений твердого тела содержатся некоторые приложения общей теории к вращению небесных тел, в частности к явлениям либрации и нутации, к движению волчка на горизонтальной плоскости и другим вопросам, а в обширном приложении рассмотрен еще вопрос о движении с трением.

Влияние трудов Эйлера по механике точки и твердого тела на все последующее развитие этой науки и на ее преподавание было огромным. Как и в области математики, он был здесь, по выражению Лапласа, «общим учителем всех нас».

Особенно велики заслуги Эйлера в развитии науки в России. «Вместе с Петром I и Ломоносовым, — писал академик С.И. Вавилов, — Эйлер стал добрым гением нашей Академии, определившим ее славу, ее крепость, ее продуктивность».

РАБОТЫ БЕРНУЛЛИ И ЭЙЛЕРА ПО МЕХАНИКЕ ЖИДКОСТЕЙ И ГАЗОВ

Проблема взаимодействия между жидкостью и частично или полностью погруженным в нее телом возникла из нужд практики в древности. Еще Архимед открыл закон, выражающий подъемную силу, которая поддерживает плавающее тело, и первый исследовал проблему устойчивости плавающих тел для некоторых фигур вращения. В XVI—XVII вв. строительство каналов, плотин, шлюзов, фонтанов, развитие судостроения и мореплавания с гораздо большей силой, чем прежде, поставило перед инженерами и учеными передовых европейских стран разнообразные задачи гидромеханики. В исследовании давления жидкости на дно и стенки сосудов значительные успехи достигнуты были голландским инженером и математиком С. Стевином (1548—1620) и независимо от него французским ученым Б. Паскалем (1623—1662), который пошел далее, открыв, в частности, принцип работы гидравлических прессов. Галилей, используя принцип возможных перемещений, вновь подверг изучению вопрос о плавающих телах.

Параллельно экспериментально и теоретически разрабатывалось учение об атмосферном давлении. Здесь важные результаты были получены Торричелли и Паскалем. Отто фон Герике (1602—1686) провел первые опыты с изобретенным им воздушным насосом, который значительно усовершенствовал английский физик Р. Бойль (1627— 1691). В 1662 г. Бойль же открыл закон обратной пропорциональности между силой давления и объемом сжигаемого воздуха (при постоянной температуре), закон, который был самостоятельно получен п убедительно подтвержден в 167 6 г. французским физиком Э. Мариоттом (1620—1684). В сравнении с этими достижениями гидро- и аэростатики успехи в области динамики жидких сред были незначительны. Б. Кастелли (1577—1644), учеником которого, как и Галилея, был Торричелли, в 1628 г. опубликовал сочинение о движении воды в реках и каналах. Он установил, что скорость течения обратно пропорциональна площади соответствующего поперечного сечения, но допустил ошибку, приняв, что скорость истечения жидкости из бокового отверстия сосуда пропорциональна высоте ее уровня. Правильный закон истечения жидкости вывел как отмечалось ранее, Торричелли. Ньютон в «Математических началах» приступил к анализу внутреннего трения в движущейся жидкости, введя понятие о вязкости. Но все это были только первые подступы к созданию гидродинамики. Энгельс в «Диалектике природы» писал, что механика жидких и газообразных тел была в более значительной степени разработана лишь в середине XVIII в. Главная заслуга в этом деле принадлежит Д. Бернулли и Л. Эйлеру.

Даниил Бернулли, второй сын Иоганна Бернулли, родился 29 января 1700 г. в Гренингене (Голландия), где работал в то время его отец. Вместе с родителями мальчик в 1705 г. переехал в Базель и здесь окончил в 1713 г. гимназию, а в 1716 г. — университет, получив звание магистра философии. Отец предназначал Д. Бернулли для работы в торговле, но юношу неудержимо интересовали науки. Он принялся изучать медицину. Однако, как писал Д. Бернулли в автобиографии, «пример членов его семьи, а именно его отца и старшего брата Николая, а также наклонности его собственной души влекли его к математическим наукам и к изучению природы. Он почти целиком отдался этим знаниям» {158} 158 Автобиография написана в третьем лице. — См. Д. Бернулли. Гидродинамика, или Записки о силах и движениях жидкостей Изд-во АН СССР, 1959, стр. 428. .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ашот Григорьян читать все книги автора по порядку

Ашот Григорьян - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Механика от античности до наших дней отзывы


Отзывы читателей о книге Механика от античности до наших дней, автор: Ашот Григорьян. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x