Ашот Григорьян - Механика от античности до наших дней
- Название:Механика от античности до наших дней
- Автор:
- Жанр:
- Издательство:Наука
- Год:1974
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ашот Григорьян - Механика от античности до наших дней краткое содержание
Книга состоит из очерков, популярно излагающих историю эволюции теоретической механики от античности до наших дней. Она включает очерки античной механики, механики средневекового Востока и Европы эпохи Возрождения, механики XVII — XX вв. Отдельные главы посвящены достижениям механики в России и СССР. В книге рассматриваются классические понятия массы, силы, импульса, скорости, ускорения и т. д.
Механика от античности до наших дней - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Заметим, что работа Эйлера по упругости воздуха привлекла внимание Ломоносова. Исследуя свойства селитры, Ломоносов, естественно, встретился с вопросом об упругой силе пороха и в этой связи писал 5 июля 1748 г. Эйлеру: «Я читаю с большой пользой для себя «Артиллерию» Робинса, снабженную Вами превосходными замечаниями» {167} 167 М. В. Ломоносов. Труды по физике и химии (1747—1752), т. 2. М.—Л., 1951, стр. 171—173.
. Далее Ломоносов говорил о разработке им собственной теории упругости воздуха.
С задачами механики жидкостей Эйлер вновь встретился в 1749 г. при консультировании работ по проведению канала между Гавелем и Одером, а затем после изобретения Сегнером (1704—1777) гидравлической машины, известной теперь каждому школьнику под именем «Сегнерова колеса». Анализу устройства и действия этой машины и попыткам ее практического применения посвящена обширная переписка между Эйлером и Сегнером за 1750— 1754 гг. {168} 168 См. Н. М. Раскин. Вопросы техники у Эйлера. — В кн.: Леонард Эйлер. Сборник статей в честь 250-летия со дня рождения, представленных Академии наук СССР, стр. 509—536.
и ряд их статей. Эйлер внес в первоначальный вариант машины Сегнера столь важные усовершенствования (присоединение так называемого направляющего аппарата и др.), что именно машина Эйлера, а не Сегнера является прообразом реактивных гидравлических турбин, строить которые начали три четверти века спустя. Вместе с тем в работе «Более полная теория машин, проводимых в движение реакцией воды», напечатанной в 1754 г. в 10-м томе «Мемуаров Берлинской академии наук», Эйлер впервые разработал общую теорию движения несжимаемой идеальной жидкости в узких трубах двоякой кривизны, вращающихся около неподвижной оси. При этом он фактически оперировал с понятием ускорения Кориолиса, которое французский механик ввел в 1831 г.
Методы расчета гидравлических турбин Эйлера, покоящихся на струнной теории, сохранили с соответствующими улучшениями свое значение в практическом машиностроении. Известный немецкий специалист по прикладной математике профессор К. Шредер пишет: «Можно сказать, что эти выдающиеся работы характеризуют Эйлера как ученого-инженера в современном смысле слова» {169} 169 К. Шредер. О трудах Леонарда Эйлера в области прикладных наук. — В кн.: Леонард Эйлер. Сборник статей в честь 250-летия…, стр. 38.
.
В 50-е годы Эйлер подготовил несколько больших работ по гидромеханике. Первая из них «Начала движения жидкостей» была напечатана в VI томе «Novi Commen-tarii» за 1756—1757 гг. В ней излагались общие начала гидро- и аэростатики, выводилось уравнение неразрывности для жидкости с постоянной плотностью. Значительная часть материала этой статьи нашла свое отражение в других работах Эйлера, написанных позднее, но вышедших раньше. Это были следующие три работы Эйлера: «Общие начала состояния равновесия жидкостей», «Общие начала движения жидкостей» и «Продолжение исследований по теории движения жидкостей», напечатанные в 1753—1755 гг. во 2-м томе «Мемуаров Берлинской академии наук». Эти классические работы составили основополагающий трактат по гидродинамике.
Первая из этих трех работ содержит глубокий анализ понятия давления, его свойств и приложений, а также вывод дифференциального условия равновесия жидкостей и газов.
Вторая статья имела решающее значение для всего последующего развития гидро- и аэродинамики, ибо именно в ней был впервые опубликован вывод уравнения неразрывности для сжимаемой жидкости и общих уравнений гидродинамики, называемых теперь уравнениями Эйлера.
В третьей статье приведены некоторые теоремы о движении жидкостей и газов в узких трубках произвольной формы.
Из других гидродинамических работ Эйлера упомянем еще ряд статей о распространении звука, о малых колебаниях воздуха в трубах постоянного и переменного сечения с применениями к теории музыки и т. д. Эти работы переплетались с аналогичными исследованиями Д. Бернулли. Математическим аппаратом этих исследований являются уравнения в частных производных второго и высшего порядков, большей частью линейные. Именно той ролью, которую играют уравнения в частных производных в гидромеханике, а также в математической физике, определялся глубокий интерес Эйлера к этой новой тогда отрасли анализа. Эйлер выработал целый ряд приемов интегрирования различных уравнений в частных производных и впервые ввел в рассмотрение некоторые их типы. Мы упомянем здесь лишь весьма важное в газовой динамике и дифференциальной геометрии уравнение

впервые изученное Эйлером, а затем С. Пуассоном (1781-1840), Б. Риманом (1826-1866), Ж.-Г. Дарбу (1842-1917). В настоящее время это уравнение встречается, в частности, в задачах о движениях газа с околозвуковыми или сверхзвуковыми скоростями.
МЕХАНИКА УПРУГИХ И ГИБКИХ ТЕЛ
Еще в древности были установлены некоторые эмпирические правила, соблюдение которых обеспечивало прочность и надежность сооружений. В XIII в. Иордан Неморарий предпринял первую попытку определить форму кривой, которую принимает под действием нагрузки ось закрепленного стержня, т. е. упругой линии. В XVI в. Леонардо да Винчи изучал вопрос о сопротивлении балок изгибу; он занимался, вероятно, и задачей о сопротивлении колонн. Галилей в «Беседах и математических доказательствах, касающихся двух новых наук» (1638) положил начало учению о сопротивлении материалов. В 1678 г. Гук нашел основной закон линейной зависимости между силой и деформацией при растяжении пружин, струн, тонких стержней и произвел ряд соответствующих опытов. Так были заложены основы теории упругости {170} 170 Подробнее— С. П. Тимошенко. История науки о сопротивлении материалов с краткими сведениями из истории теории упругости и теории сооружений. М., Физматгиз, 1957, стр. 9—36.
.
В 1691 г. Я. Бернулли начал серию исследований, посвященных проблеме упругой линии. Некоторые предпосылки и выводы его неточны, но в целом он значительно продвинулся вперед. В частности, он вывел дифференциальное уравнение задачи и доказал, что кривизна линии изгиба пропорциональна изгибающему моменту в точке, — положение, которое использовали затем другие ученые, и среди них Эйлер.
Эйлер рассмотрел задачу об упругих кривых в большом приложении к «Методу нахождения кривых линий» (1744); в русском переводе оно занимает 125 страниц. Работа эта была вызвана замечанием, сделанным Д. Бернулли в письме Эйлеру от 22 октября 1742 г. Бернулли предложил применить к задаче изопериметрический метод, т. е. свести ее к задаче о минимуме некоторого интеграла. Реализуя эту идею, Эйлер по-новому вывел дифференциальное уравнение Я. Бернулли и решил его при различных граничных условиях. В другом отделе того же приложения Эйлер рассмотрел продольный изгиб колонны под действием осевой сжимающей силы и получил выражение для предельной нагрузки, превышение которой приводит к изгибу; эта формула имеется теперь во всех справочниках. Затем Эйлер переходит к изучению колебаний стержней, начиная со стержня, в естественном состоянии прямого и с жестко заделанным в вертикальном положении верхним концом. Эта задача приводится к интегрированию обыкновенного линейного однородного дифференциального уравнения четвертого порядка. В заключение разобраны задачи о колебании стержней при других предположениях о закреплении их концов.
Читать дальшеИнтервал:
Закладка: