Ашот Григорьян - Механика от античности до наших дней

Тут можно читать онлайн Ашот Григорьян - Механика от античности до наших дней - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Наука, год 1974. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Механика от античности до наших дней
  • Автор:
  • Жанр:
  • Издательство:
    Наука
  • Год:
    1974
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    3.5/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ашот Григорьян - Механика от античности до наших дней краткое содержание

Механика от античности до наших дней - описание и краткое содержание, автор Ашот Григорьян, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга состоит из очерков, популярно излагающих историю эволюции теоретической механики от античности до наших дней. Она включает очерки античной механики, механики средневекового Востока и Европы эпохи Возрождения, механики XVII — XX вв. Отдельные главы посвящены достижениям механики в России и СССР. В книге рассматриваются классические понятия массы, силы, импульса, скорости, ускорения и т. д.

Механика от античности до наших дней - читать онлайн бесплатно полную версию (весь текст целиком)

Механика от античности до наших дней - читать книгу онлайн бесплатно, автор Ашот Григорьян
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Значительный вклад в развитие теории упругости, сопротивления материалов, статики сооружений внес Ф.С. Ясинский (1856—1899). По окончании Петербургского института инженеров путей сообщения Ясинский работал на железных дорогах. В 1896 г. он был избран профессором Петербургского института инженеров путей сообщения. Большая часть научных исследований Ясинского связана с его инженерной деятельностью. В 1893 г. он опубликовал большую работу «Опыт развития теории продольного изгиба». Кроме того, ему принадлежит ряд важных работ по теории устойчивости упругих стержней. В начале своей научной деятельности теорией упругости успешно занимался выдающийся математик

B. А. Стеклов, имя которого нам еще встретится далее. В 1893 г. он напечатал три работы: «Одна задача из теории упругости», «О равновесии упругих цилиндрических тел», «О равновесии упругих тел вращения», а в 1899 г. появилась его четвертая работа «К задаче о равновесии упругих изотропных цилиндров». Все они были опубликованы в «Сообщениях Харьковского математического общества».

Вопросы устойчивости упругих систем приобрели в начале XX в. огромное значение в различных областях техники, поэтому многие русские ученые весьма серьезно занимались решением связанных с этой проблемой задач.

В этой области важные результаты были получены

C. П. Тимошенко (родился в 1878 г.), который до 1919 г. преподавал в Петербургском и Киевском политехнических институтах; в 1920 г. Тимошенко выехал за границу. До отъезда из России он написал много работ по теории устойчивости упругих систем (стержней, пластин, оболочек). За работу «Об устойчивости упругих систем» («Известия Киевского политехнического института», 1910) Тимошенко был удостоен премии Д.И. Журавского. В этой работе он оригинально развил приближенный метод Дж. Рэлея и В. Ритца для определения частот колебаний в упругих системах; прием Тимошенко основан на рассмотрении энергии системы. Помимо большого числа научных исследований Тимошенко написал замечательные учебники: «Курс сопротивления материалов» (изд. 1. Киев, 1911), «Курс теории упругости» (СПб., 1914) и др. Учебниками Тимошенко до сих пор пользуются в высших учебных заведениях.

Новый приближенный метод интегрирования дифференциальных уравнений теории упругости был разработан профессором Петербургского политехнического института и Морской академии И.Г. Бубновым (1872—1919). Впервые этот метод, не связанный с вычислением энергии системы, Бубнов описал в 1911 г. в отзыве на упомянутое выше сочинение Тимошенко, представленное на премию имени Журавского. Затем Бубнов использовал этот метод для решения задач на устойчивость пластин, важных в расчетах обшивки корабельного корпуса. Задачи на расчет жестких и гибких пластин разобраны в известном курсе Бубнова «Строительная механика корабля» (СПб., 1912). Бубнову принадлежат очень большие заслуги в теории и практике кораблестроения, в частности он явился в России пионером строительства подводных лодок, первая из которых была спущена на воду в 1903 г.

Дальнейшее развитие метод Бубнова получил в трудах Б.Г. Галеркина (1871—1945), прежде всего в статье «Стержни и пластинки» («Вестник инженеров», 1915). Воспитанник Петербургского политехнического института, Галеркин начал преподавательскую и научную деятельность в 1909 г. Особенно широко развернулось его научное творчество уже после Октябрьской революции.

Метод Бубнова — Галеркина, в некоторых отношениях более общий и простой, чем метод Рэлея—Ритца—Тимошенко, получил очень широкое распространение, применяется он и теперь к ряду задач вариационного исчисления, функционального анализа и математической физики.

В связи с потребностями кораблестроения теорией упругости занимался и А.Н. Крылов. В частности, ему принадлежит подробное исследование вынужденных колебаний стержней постоянного сечения, сперва напечатанное в «Mathematische Annalen» за 1905 г. и затем включенное в упоминавшийся курс дифференциальных уравнений математической физики. Обобщенный для этой задачи метод Пуассона, примененный Пуассоном к свободным колебаниям, Крылов применил к вынужденным колебаниям груза, подвешенного к концу растяжимой нити, и к связанным с этой задачей вопросам — теории индикатора паровой машины, измерению давления газа в канале орудия и к крутильным колебаниям вала с маховиком на конце.

Целый ряд задач теории упругости — по устойчивости стержней и пластин, вибрациям стержней и дисков и пр. — решил в 1911—1913 гг. А.Н. Дынник (1876— 1950). Дынник окончил Киевский политехнический институт в 1899 г. и с 1911 г. состоял профессором Горно-металлургического института в Днепропетровске. Он продолжал успешные изыскания по теории упругости и в советский период.

К 1914 г. относится начало работ по теории упругости Л.С. Лейбензона (1879—1951) — прежде всего по устойчивости упругого равновесия длинных сжатых стержней с первоначальным кручением около прямолинейной оси стержня, а затем по устойчивости сферической и цилиндрической оболочек. Практическое значение первой задачи ясно из того, что всем известные теперь сетчатые башни системы В.Г. Шухова составлены из закрученных прямолинейных образующих.

Исследованиями в области теории упругости занимался в начале XX в. и С.А. Чаплыгин. К 1900 г. относятся его рукописи «Деформация в двух измерениях» и «Давление жесткого штампа на упругое основание», которые впервые были напечатаны лишь в 1950 г. В этих статьях Чаплыгин разработал метод решения плоской задачи теории упругости, основанный на применении теории функций комплексного переменного, и использовал его при решении задачи об эллиптическом отверстии в бесконечной плоскости и задачи о вдавливании прямоугольного штампа в упругую полуплоскость.

Аналогичный метод решения плоской задачи теории упругости был разработан Г.В. Колосовым (1867—1936). В 1909 г. Колосов опубликовал весьма важную работу «Об одном приложении теории функций комплексного переменного к плоской задаче математической теории упругости», где им были установлены формулы, выражающие компоненты тензора напряжений и вектора смещения через две функции комплексного переменного, аналитические в области, занимаемой упругой средой. В 1916 г. метод Колосова был применен к тепловым напряжениям в плоской задаче теории упругости Н.И. Мусхелишвили. Деятельность Мусхелишвили, как и некоторых других названных здесь ученых, развернулась во всей широте уже после Октябрьской революции.

ФИГУРЫ РАВНОВЕСИЯ ВРАЩАЮЩЕЙСЯ ЖИДКОСТИ

Вкратце остановимся на проблеме фигур равновесия вращающейся жидкости, в разработку которой основной вклад внес А.М. Ляпунов.

Ньютон показал, что под влиянием центробежных сил и взаимного притяжения своих частиц однородная жидкость при малой угловой скорости принимает форму сжатого эллипсоида вращения. Вопрос о форме, принимаемой равномерно вращающейся вокруг неподвижной оси жидкой массой, все частицы которой взаимно притягиваются по закону Ньютона, приобрел весьма важное значение при исследовании проблем космогонии.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ашот Григорьян читать все книги автора по порядку

Ашот Григорьян - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Механика от античности до наших дней отзывы


Отзывы читателей о книге Механика от античности до наших дней, автор: Ашот Григорьян. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x