Ашот Григорьян - Механика от античности до наших дней

Тут можно читать онлайн Ашот Григорьян - Механика от античности до наших дней - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Наука, год 1974. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Механика от античности до наших дней
  • Автор:
  • Жанр:
  • Издательство:
    Наука
  • Год:
    1974
  • Город:
    М.
  • ISBN:
    нет данных
  • Рейтинг:
    3.5/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Ашот Григорьян - Механика от античности до наших дней краткое содержание

Механика от античности до наших дней - описание и краткое содержание, автор Ашот Григорьян, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга состоит из очерков, популярно излагающих историю эволюции теоретической механики от античности до наших дней. Она включает очерки античной механики, механики средневекового Востока и Европы эпохи Возрождения, механики XVII — XX вв. Отдельные главы посвящены достижениям механики в России и СССР. В книге рассматриваются классические понятия массы, силы, импульса, скорости, ускорения и т. д.

Механика от античности до наших дней - читать онлайн бесплатно полную версию (весь текст целиком)

Механика от античности до наших дней - читать книгу онлайн бесплатно, автор Ашот Григорьян
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В XVIII—XIX вв. при решении этой проблемы исходили из гипотезы о том, что на некоторой стадии развития небесные тела были жидкими. А. Клеро показал, что если скорость вращения жидкой массы очень мала, то за поверхности уровня с достаточной степенью точности могут быть приняты поверхности эллипсоидов вращения. Но этот результат справедлив лишь в первом приближении, а теория Клеро не позволяла найти более высокие приближения. Затем А. Лежандр и П. Лаплас предложили методы, которые позволяли находить последовательные приближения.

В 1829 г. Пуассон отметил, что результаты Лежандра и Лапласа также оставляют желать много лучшего, поскольку не был исследован вопрос, будут ли сходящимися ряды, к которым приводят их методы. Создавшаяся ситуация и побудила Ляпунова продолжить исследования. Ляпунов в отличие от Лежандра, Лапласа и Пуассона не пользовался разложением в ряд, а рассмотрел уравнения задачи (из которых первое является уравнением Клеро) при весьма общих предположениях о законе распределения плотности вращающейся жидкой массы.

Ляпунов поставил вопрос в общей форме и, основываясь на положении Лагранжа о минимуме потенциала, дал строгое решение задачи.

В магистерской диссертации «Об устойчивости эллипсоидальных форм равновесия вращающейся жидкости» (1884) Ляпунов впервые дал точное определение понятия устойчивости вращающейся жидкости. Он доказал, что признак устойчивости системы, обладающей конечным числом степеней свободы, не может быть перенесен на случай движения жидкости, имеющей бесконечное число степеней свободы. Далее Ляпунов установил достаточный критерий устойчивости фигур равновесия и показал, что эллипсоид вращения является устойчивой фигурой равновесия, если его эксцентриситет не превышает некоторой, определенной Ляпуновым величины.

В 1901 г. Ляпунов, преодолев огромные математические трудности и разработав ряд новых аналитических методов, выполнил строгое исследование вопроса о существовании новых фигур равновесия жидкости, равномерно вращающейся вокруг некоторой оси, если частицы жидкости взаимно притягиваются по закону Ньютона.

«Даже с внешней стороны серия мемуаров и отдельно изданных книг [Ляпунова] по вопросу о фигурах равновесия вращающейся жидкости поражает своей грандиозностью», — отмечал Стеклов {225} 225 В. А. Стеклов. Александр Михайлович Ляпунов. 1857—1918. Некролог. — «Известия Российской академии наук», 1919, т. 13, №8—11, стр. 379. .

Основной результат исследования Ляпунова таков: при наложении определенных требований на плотность жидкости для всех значений угловой скорости вращения, не превосходящих некоторого определенного предела, существует фигура равновесия вращающейся массы неоднородной жидкости, находящейся в поле своего собственного тяготения.

Работы Ляпунова по фигурам равновесия вращающейся жидкости вызвали длительную дискуссию Ляпунова с английским ученым Дж. Дарвином (1845—1912).

Дж. Дарвин исследовал вопрос об устойчивости форм равновесия вращающейся жидкости, которым А. Пуанкаре (1854—1912) дал название грушевидных (для случая вязкой жидкости). По формулам Пуанкаре, которыми пользовался английский ученый, устойчивость или неустойчивость зависит от знака некоторой величины А.

Пользуясь методом приближенных вычислений, Дарвин после весьма сложных расчетов нашел А < 0, откуда следовало, что эти формы устойчивы. На этом Дж. Дарвин построил свою космогоническую гипотезу развития двойных звезд.

Однако грушевидные фигуры равновесия получаются как частный случай из бесчисленного множества других фигур равновесия, строго выведенных Ляпуновым, причем для А получается точное выражение в виде алгебраической функции двух аргументов. Это позволило Ляпунову в результате довольно сложных вычислений, проверенных несколькими способами, показать, что А > 0, т. е. грушевидные формы неустойчивы. Иными словами, воспользовавшись без достаточной математической осторожности приближенными формулами, Дж. Дарвин получил ошибочный результат.

Об этом разногласии Ляпунов писал в работе «Об одной задаче Чебышева» (1905) и в серии мемуаров «О фигурах равновесия вращающейся и однородной жидкой массы, мало отличных от эллипсоидов», печатавшейся в «Записках Академии наук» в 1906—1914 гг. В третьей части этой работы, вышедшей в 1912 г., он подробно изложил выводы своих точных формул и все вычисления.

Пуанкаре утверждал в 1911 г., что «грушевидная форма, может быть, устойчива, но нет уверенности, что это действительно так». Дж. Дарвин считал эту фигуру устойчивой; Ляпунов же пришел к противоположному результату. Чтобы окончательно доказать правильность своей точки зрения, Ляпунов опубликовал ряд фундаментальных работ, в которых дал безукоризненное математическое доказательство своего утверждения. Таким образом, возникшая между А.М. Ляпуновым и Дж. Дарвином полемика закончилась полной победой русского ученого. Впрочем, на Западе отдельные ученые продолжали сомневаться, на чьей стороне истина. Только в 1917 г., после опубликования работы Дж. Джинса (1877—1946), зарубежные ученые окончательно признали полную правоту Ляпунова. Джине обнаружил ошибку в вычислениях Дж. Дарвина, приведшую к неверному выводу об устойчивости грушевидных фигур.

Труды Ляпунова по фигурам равновесия вращающейся жидкости до сих пор остаются непревзойденными. Все работы отечественных и зарубежных ученых, выполненные после смерти Ляпунова, в той или иной степени основаны на его идеях и методах.

ГИДРОДИНАМИКА И ГИДРАВЛИКА

Важнейшим результатом развития механико-математической мысли в России в конце XIX и в начале XX в. было появление классических работ по гидродинамике и гидравлике, принадлежащих Н.Е. Жуковскому.

Николай Егорович Жуковский (1847—1921), сын инженера, окончил физико-математический факультет Московского университета в 1868 г. С 1872 г. он преподавал в Московском техническом училище сначала математику, а затем — с 1874 по 1919 г. — механику. В 1886 г. Жуковский возглавил кафедру механики в Московском университете и в течение многих лет руководил Московским математическим обществам, с 1903 г. как его вице-президент и с 1905 г. — как президент.

Преподавательская работа в двух крупнейших учебных заведениях России отражала в некоторой мере основное направление научной деятельности Жуковского, его стремление увязать развитие научных и технических идей и на основе общих теоретических построений получать решения задач, выдвигаемых практикой.

Жуковского особенно привлекал своей наглядностью геометрический метод изложения механики. В своей магистерской диссертации «Кинематика жидкого тела» (1876) он наряду с аналитическим методом широко использует геометрический метод исследования, что дало ему возможность представить ясную картину законов движения частицы жидкости в потоке. Эта работа открыла ряд его исследований в области гидродинамики.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ашот Григорьян читать все книги автора по порядку

Ашот Григорьян - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Механика от античности до наших дней отзывы


Отзывы читателей о книге Механика от античности до наших дней, автор: Ашот Григорьян. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x