Кип Торн - Черные дыры и складки времени. Дерзкое наследие Эйнштейна

Тут можно читать онлайн Кип Торн - Черные дыры и складки времени. Дерзкое наследие Эйнштейна - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, год 2007. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Черные дыры и складки времени. Дерзкое наследие Эйнштейна
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2007
  • ISBN:
    нет данных
  • Рейтинг:
    3.9/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Кип Торн - Черные дыры и складки времени. Дерзкое наследие Эйнштейна краткое содержание

Черные дыры и складки времени. Дерзкое наследие Эйнштейна - описание и краткое содержание, автор Кип Торн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Черные дыры и складки времени. Дерзкое наследие Эйнштейна - читать онлайн бесплатно полную версию (весь текст целиком)

Черные дыры и складки времени. Дерзкое наследие Эйнштейна - читать книгу онлайн бесплатно, автор Кип Торн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В большинстве случаев (например, повсюду в Солнечной системе) давление материи очень мало по сравнению с плотностью масс, умноженной на скорость света, и поэтому его вклад в кривизну пространства-времени пренебрежимо мал. Пространство-время искривляется практически только массой. Лишь в глубине нейтронных звезд (см. главу 5) и еще в некоторых экзотических местах вклад давления становится существенным.

При помощи уравнения поля Эйнштейн и другие физики не только объяснили отклонение лучей света Солнцем и все особенности движения планет по своим орбитам, включая загадочное смещение перигелия Меркурия, они также предсказали существование черных дыр (глава 3), гравитационных волн (глава 10), сингулярностей пространства-времени (глава 13) и, возможно, существование белых дыр и машин времени (глава 14). Остальная часть этой книги посвящена наследию гения Эйнштейна.

Просматривая научные публикации Эйнштейна (я вынужден был использовать для этого русский сборник его избранных трудов, изданный в 1965 г., поскольку немецкого языка я не знаю, а большинство его работ не были переведены на английский вплоть до 1993 года!), я столкнулся с разительной переменой стиля его работ, произошедшей в 1912 г. До этого его статьи поражали своей элегантностью, глубочайшей интуицией и умеренным использованием математики. Большую часть его рассуждений я и мои друзья в неизменном виде используем сейчас, в девяностые годы XX века, читая курсы лекций по теории относительности. Сделать их лучше не удалось никому. Начиная же с 1912 г. работы Эйнштейна наполняются сложными математическими выкладками, которые, впрочем, перемежаются глубоким анализом сути физических законов. Нет сомнения, что именно комбинация физической интуиции и математической культуры, которой из всех физиков, занимавшихся теорией гравитации в 1912—1915 гг., обладал только Эйнштейн, привела его к открытию релятивистских законов гравитации.

Однако Эйнштейну использование математических методов давалось с большим трудом. Как позднее говорил Гильберт: «В Геттингене любой мальчишка понимает четырехмерную геометрию лучше, чем Эйнштейн. И все же именно он сделал это [сформулировал релятивистские законы гравитации], а не кто-то из математиков». Он сделал это потому, что одной математики было недостаточно, было необходимо гениальное физическое предвидение Эйнштейна.

Конечно, Гильберт преувеличивал. Эйнштейн был очень неплохим математиком, хотя его математическая техника не шла ни в какое сравнение с его пониманием физики. В результате, его выкладки, сделанные после 1912 г., почти никогда не используются в оригинальном виде. Последователи научились делать их гораздо лучше. И по мере того, как теоретическая физика с годами быстро становилась все более и более математической, роль Эйнштейна становилась в ней все менее и менее заметной. Его факел подхватили другие.

ЧЕРНЫЕ ДЫРЫ ОТКРЫТЫ И ОТВЕРГНУТЫ

глава, в которой законы искривленного пространства Эйнштейна предсказывают черные дыры, а сам Эйнштейн их отвергает

«Важным результатом этого исследования, — писал Эйнштейн в технической статье в 1939 г., — является объяснение того, почему «Швардшильдовские сингулярности» не существуют в физической реальности». Этими словами он категорически отрекался от своего собственного открытия: черных дыр, возможность существования которых предсказывала общая теория относительности.

К этому времени были известны лишь некоторые свойства черных дыр, полученные как следствия из законов Эйнштейна, и даже названия своего они еще не получили; их называли «Шварцшильдовские сингулярности». Тем не менее, уже было ясно, что любой объект, попавший в черную дыру, никогда не сможет вернуться обратно и даже не сможет послать оттуда никакого сигнала. Этого было достаточно, чтобы убедить Эйнштейна и большинство других физиков тех лет в том, что черные дыры — это совершено противоестественные объекты, которым не место в реальном мире. Законы физики, считали они, должны каким-то образом защищать Вселенную от подобных монстров.

Что же такого узнали исследователи о черных дырах, что вызвало такое неприятие Эйнштейна? Сколь достоверным можно было считать их предсказание общей теорией относительности? Как мог Эйнштейн отвергать это предсказание и в то же время сохранять уверенность в правильности своих релятивистских законов? Ответы на эти вопросы следует искать в XVIII веке.

В течение XVIII века ученые, которых в то время называли натурфилософами (естественными философами), были уверены, что

гравитация подчиняется законам Ньютона, а свет представляет собой поток частиц (корпускул), которые испускаются источником с одной и той же, универсальной скоростью. Наблюдения за движением спутников Юпитера позволили установить, что эта скорость составляет примерно 300000 километров в секунду.

В 1783 г. британский натурфилософ Митчелл, объединив корпускулярную модель света с законами тяготения Ньютона, предсказал, как должны выглядеть очень компактные звезды. Он сделал это посредством мысленного эксперимента, описание которого я приведу в несколько измененном виде.

Подбросим частицу с поверхности звезды с некоторой начальной скоростью и предоставим ей возможность двигаться свободно. Если начальная скорость мала, притяжение звезды затормозит ее, остановит и заставит упасть на поверхность. Если же начальная скорость будет достаточно велика, притяжение затормозит ее, но не сможет остановить; частица улетит прочь от звезды. Минимальная скорость, которую надо сообщить частице для того, чтобы она покинула звезду, называется «скоростью отрыва». Для частицы, стартующей с поверхности Земли, эта скорость равна 11 километров в секунду; а для того чтобы она покинула поверхность Солнца, ее начальная скорость должна составлять 617 километров в секунду, или 0,2 % от скорости света.

Используя законы Ньютона, Митчелл мог рассчитывать скорость отрыва и знал, что она пропорциональна квадрату массы звезды, деленному на ее диаметр. Таким образом, при одной и той же массе, чем меньше диаметр звезды, тем больше должна быть скорость отрыва. Объяснение этому очень простое: чем меньше диаметр, тем ближе поверхность к центру звезды и, соответственно, работа, которую надо совершить против сил гравитационного притяжения, должна быть больше.

В таком случае, рассуждал Митчелл, должен существовать критический диаметр, для которого скорость отрыва равна скорости света. Если световые корпускулы притягиваются звездой так же, как и все остальные частицы, то свет не сможет покинуть звезду, диаметр которой меньше критического. Будучи испущеными с поверхности с обычной скоростью света, эти корпускулы сначала остановятся, а затем упадут обратно на поверхность (см. рис. 3.1).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Кип Торн читать все книги автора по порядку

Кип Торн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Черные дыры и складки времени. Дерзкое наследие Эйнштейна отзывы


Отзывы читателей о книге Черные дыры и складки времени. Дерзкое наследие Эйнштейна, автор: Кип Торн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x