Кип Торн - Черные дыры и складки времени. Дерзкое наследие Эйнштейна

Тут можно читать онлайн Кип Торн - Черные дыры и складки времени. Дерзкое наследие Эйнштейна - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, год 2007. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Черные дыры и складки времени. Дерзкое наследие Эйнштейна
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2007
  • ISBN:
    нет данных
  • Рейтинг:
    3.9/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Кип Торн - Черные дыры и складки времени. Дерзкое наследие Эйнштейна краткое содержание

Черные дыры и складки времени. Дерзкое наследие Эйнштейна - описание и краткое содержание, автор Кип Торн, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Черные дыры и складки времени. Дерзкое наследие Эйнштейна - читать онлайн бесплатно полную версию (весь текст целиком)

Черные дыры и складки времени. Дерзкое наследие Эйнштейна - читать книгу онлайн бесплатно, автор Кип Торн
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В главе 3 мы также обсуждали судьбу света, излучаемого с поверхности статичных звезд. Поскольку вблизи поверхности время бежит медленнее, чем вдали от нее (гравитационное замедление времени), испущенные с поверхности и принимаемые на удалении световые волны будут иметь увеличенный период колебаний и, соответственно, большую длину волны и более красный цвет. Как только свет выбирается из мощного гравитационного поля, его длина волны оказывается сдвинутой к красному краю спектра (гравитационное красное смещение). Если статичная звезда имеет размер в четыре раза больший критического, длина волны увеличивается на 15% (световой фотон в верхнем правом углу рисунка); если же звезда имеет размер, превышающий критический в два раза, красный сдвиг составляет 41% (справа в середине); если длина окружности звезды точно равна критической, длина волны света неограниченно смещается вправо, что означает, что у него вообще не остается энергии, и он прекращает свое существование.

Рассмотрев в своих предварительных расчетах такую последовательность статичных звезд, Оппенгеймер и Снайдер пришли к такому выводу: во-первых, схлопывающаяся звезда, так же как и рассмотренные статичные, вероятно, порождает большое искривление пространства-времени вблизи поверхности при размерах, близких к критическим; но это искривление не бесконечно и потому не бесконечны и приливные гравитационные силы. Во-вторых, когда звезда схлопывается, свет с ее поверхности оказывается все более смещенным в красную область, и как только она достигает критического размера, красное смещение становится бесконечным, делая звезду совершенно невидимой. По словам Оппенгеймера, звезда как бы «сама обрывает» визуальную связь с нашей Вселенной.

Существует ли какой-либо способ, — спросили себя Оппенгеймер и Снайдер, — чтобы внутренние свойства звезды, которые игнорируются в таком быстром расчете, могли спасти звезду от «самоотсечения»? Например, не могло ли схлопывание протекать столь медленно, что критический размер никогда бы не достигался, даже спустя неограниченное время?

Оппенгеймер и Снайдер хотели бы ответить на все перечисленные вопросы, тщательно рассчитав реальное схлопывание звезды, как это показано в левой части рис. 6.3. Однако подобно Земле, любая реальная звезда хоть немного, но вращается. Благодаря такому вращению, центробежные силы, так же как и на Земле, слегка выпячивают экваториальную область звезды, поэтому она не может быть совершенно сферичной. Схлопываясь, звезда должна вращаться все быстрее (как фигурист, прижимающий к себе руки), и это все ускоряющееся вращение вызывает рост центробежных сил внутри звезды, которые делают все более заметным вздутие на экваторе — существенно заметнее, возможно даже настолько, что оно прерывает схлопывание, когда центробежные силы полностью уравновесят гравитационное притяжение. Каждая реальная звезда имеет высокие давление и плотность в центре и меньшие — во внешних слоях; при схлопывании же внутри, то там то здесь, будут формироваться комки с более высокой плотностью (подобно вкраплениям изюма в сладкой булочке). Более того, газообразное вещество звезды при схлопывании порождает ударные волны — аналог разбивающихся о берег океанских волн, и эти удары могут выбрасывать вещество, а значит, и массу с поверхности звезды, так же как волны выбрасывают в воздух водяные брызги. Наконец, истощает звезду, унося массу, и излучение (электромагнитные и гравитационные волны, нейтрино и т.д.)

Оппенгеймеру и Снайдеру хотелось бы учесть в своих расчетах все эти эффекты, но в 1930 г. это было непосильной задачей, лежащей за

63 Слева Физические явления в реалистичной модели звезды Справа - фото 82
6.3. Слева: Физические явления в реалистичной модели звезды. Справа: Идеализации, принятые Оппенгеймером и Снайдером при вычислении охлопывания

пределами возможностей любого физика или вычислительной машины. Ее решение станет возможным лишь в 1980-е годы с появлением суперкомпьютеров. Таким образом, чтобы добиться хоть какого-то прогресса, необходимо было построить идеализированную модель охлопывающейся звезды и затем рассчитать предсказания, даваемые законами физики, для этой модели.

Подобные идеализации были сильной стороной Оппенгеймера: сталкиваясь с ужасающе сложными ситуациями, подобными этой, он мог почти безошибочно определить, какие явления имеют решающее значение, а какие второстепенны.

Что касается охлопывающихся звезд, здесь, как верил Оппенгеймер, среди других особенностей, определяющее значение имела гравитация в том виде, как она описана в общей теории относительности Эйнштейна. Она и только она не могла быть опущена при планировании предстоящего расчета. В противоположность этому, вращением звезд и несферичностью их формы можно было пренебречь (они способны играть заметную роль лишь для некоторых схлопывающихся звезд, а для слабовращающихся, вероятно, сильного эффекта не дают). На самом деле, Оппенгеймер не мог это доказать математически точно, но интуитивно это казалось очевидным; так оно и оказалось в действительности. Аналогичным образом, интуиция подсказывала, что утечка через излучение — малосущественная деталь, как, впрочем, и ударные волны, и комки плотности. Более того, поскольку (как показали Волков и Оппенгеймер) гравитация могла пересилить любое давление в массивной мертвой звезде, казалось безопасным допустить (хотя, конечно, это не так), что в схлопывающейся звезде как будто бы нет внутреннего давления ни теплового, ни давления вырожденного (клаустрофобного) движения электронов и нейтронов, ни давления, обусловленного ядерными силами. Настоящая звезда с реальным давлением может схлопываться не так, как идеальная звезда без давления, но отличия в схлопывании должны быть умеренными, не слишком значительными.

Именно поэтому Оппенгеймер предложил Снайдеру для расчетов идеализированную модель: основываясь на точных законах общей теории относительности, рассчитать схлопывание идеально сферичной, не вращающейся и не излучающей звезды с однородной плотностью (одинаковой в середине и на поверхности) и при полном отсутствии внутреннего давления (см. рис. 6.3).

Даже со всеми этими упрощениями (вызывавшими скептицизм у других физиков на протяжении последующих 30 лет) расчет оставался чрезвычайно сложным. К счастью, в Пасадене мог помочь Р. Толман. Часто обращаясь к нему за советом по математике и апеллируя к физической интуиции Оппенгеймера, Снайдер получил систему уравнений, полностью описывающую процесс схлопывания, и, проявив большую изобретательность, решил ее. Теперь в его распоряжении было подробное описание процесса схлопывания, выраженное в формулах! Анализируя эти формулы с разных сторон, физики могут по своему желанию увидеть любые аспекты схлопывания — как это выглядит вне звезды, внутри нее, на ее поверхности.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Кип Торн читать все книги автора по порядку

Кип Торн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Черные дыры и складки времени. Дерзкое наследие Эйнштейна отзывы


Отзывы читателей о книге Черные дыры и складки времени. Дерзкое наследие Эйнштейна, автор: Кип Торн. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x