LibKing » Книги » sci-phys » Карлос Касадо - Вселенная работает как часы. Лаплас. Небесная механика.

Карлос Касадо - Вселенная работает как часы. Лаплас. Небесная механика.

Тут можно читать онлайн Карлос Касадо - Вселенная работает как часы. Лаплас. Небесная механика. - бесплатно полную версию книги (целиком). Жанр: sci-phys, издательство Де Агостини, год 2015. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Карлос Касадо - Вселенная работает как часы. Лаплас. Небесная механика.
  • Название:
    Вселенная работает как часы. Лаплас. Небесная механика.
  • Автор:
  • Жанр:
  • Издательство:
    Де Агостини
  • Год:
    2015
  • ISBN:
    нет данных
  • Рейтинг:
    3.6/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Карлос Касадо - Вселенная работает как часы. Лаплас. Небесная механика. краткое содержание

Вселенная работает как часы. Лаплас. Небесная механика. - описание и краткое содержание, автор Карлос Касадо, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Пьер-Симон де Лаплас существенно повлиял на развитие науки и техники в течение XIX века. Он спроектировал научные учреждения новой послереволюционной Франции, и именно его подпись стоит под декретом, который сделал обязательным использование десятичной метрической системы. Этот ученый придал физике Ньютона прочный математический каркас и систематизировал разрозненные результаты зарождающейся дисциплины о теории вероятностей. Моделирование самых различных аспектов действительности убедило Лапласа в том, что все в нашей жизни предопределено: спонтанность и свободная воля, — утверждал он, — всего лишь иллюзия.

Вселенная работает как часы. Лаплас. Небесная механика. - читать онлайн бесплатно полную версию (весь текст целиком)

Вселенная работает как часы. Лаплас. Небесная механика. - читать книгу онлайн бесплатно, автор Карлос Касадо
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

«Милостивый государь! Вы имели случай убедиться в том, как мало я обращаю внимания на рекомендации, но Вам они были совершенно не нужны. Вы зарекомендовали себя сами, и этого мне совершенно достаточно. Моя помощь — к Вашим услугам».

В письме на четырех листах Лаплас доказал свое знание фундаментальных принципов механики и трудов Ньютона и самого д’Аламбера, что давало ему право стать адъюнктом натурфилософии, то есть ученым (этот термин войдет в обиход лишь в середине XIX века).

Впервые эту историю рассказал математик Жан Батист Жозеф Фурье (1768-1830) в посмертной речи в память о Лапласе. Не исключено, что он таким образом хотел подчеркнуть смелость 20-летнего юноши, который постучал в дверь мэтра французской математики и удивил его, доказав свой талант. Однако существуют и другие версии этой истории, в частности в одной из них говорится, что д’Аламбер предложил юноше задачу, чтобы понять, достоин ли он получить помощь, и этот вариант также нельзя полностью отрицать.

Как бы то ни было, в 1769 году Лаплас начал карьеру в Париже под покровительством знаменитого философа, который рекомендовал его в качестве преподавателя математики в военную школу.

Лаплас стал частью парижской интеллектуальной элиты и вошел в круг д’Аламбера. Он получил возможность общаться и с другими математиками, такими как Николя де Кондорсе, алгебраист Этьенн Безу (1730-1783) и астроном Жозеф Жером Франсуа де Лаланд (1732-1807). Однако Лапласа одолевало новое амбициозное желание — получить официальное место в Академии наук.

АНАЛИЗ И ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Чтобы иметь возможность баллотироваться для вступления в Академию, Лаплас должен был как можно скорее приступить к работе. Под контролем д’Аламбера он проводил часы в чтении и изучении таких трудов Леонарда Эйлера, как «Введение в анализ бесконечно малых» (1748), «Наставление по дифференциальному исчислению» (1755) и «Интегральное исчисление» (1768), а также последних работ Жозефа Луи Лагранжа. Лаплас стремился открыть для себя новые достижения математиков в развитии анализа и его техник. Но что такое анализ? Почему он так важен для адъюнкта натурфилософии Лапласа?

В течение двух тысячелетий, начиная с пифагорейцев и платоников, все знание о небесных телах было поделено на две части: количественную и качественную. Астрономия, космология и небесная физика представляли количественную часть, а вот знания земного мира (земная физика) были исключительно качественными (физика, унаследованная от Аристотеля). В XVI и XVII веках, с укреплением новой концепции природной механики, основанной на экспериментальной практике и развитии математики, положение вещей начало меняться.

Как и другие ученые, Исаак Ньютон искал возможность описать как можно больше природных феноменов ограниченным количеством математических законов. Он предложил математическую модель для описания траектории планет, наблюдаемых Коперником (1473-1543), Тихо Браге (1546-1601) и Кеплером (1571-1630), а также для перемещения небесных тел («тяжелые тела»), изученных Галилеем (1564-1642). Ньютон описал законы движения в виде математической формулы, устанавливающей связь между физическими величинами и скоростью их изменения, — он говорил о расстоянии, пройденном подвижным объектом, с учетом его скорости и его скорости с учетом ускорения. Законы физики нашли выражение в виде дифференциальных уравнений, которые, в своих производных, использовались для измерения изменений.

ЛЕОНАРД ЭЙЛЕР

«Читайте, читайте Эйлера, он — наш общий учитель». Эти слова Лапласа воздают должное Леонарду Эйлеру (1707- 1783). Сын пастора-кальвиниста, этот швейцарский математик, без сомнения, был самым продуктивным среди своих современников. Его работы лежат в основе сотен математических трудов и многочисленных учебников по исчислению, в которых и сегодня мы увидим введенное Эйлером определение функций с помощью f(x). Часто говорят, и не без оснований, что все учебники по математике являются копиями Эйлера или копиями копий Эйлера.

Ученый легко совершал довольно сложные математические расчеты. Несмотря на полную слепоту, которой он страдал в течение последних 17 лет жизни, Эйлер продолжил плодотворно работать в прежнем ритме благодаря своей исключительной памяти (например, он знал наизусть «Энеиду»).

Заурядный философ Зато талант Эйлера в философии был скорее посредственным - фото 2
Заурядный философ

Зато талант Эйлера в философии был скорее посредственным. Вольтер высмеял его «Письма к немецкой принцессе о разных физических и философских материях» перед Фридрихом II Великим, хотя этот сборник представлял собой своеобразную научно-популярную энциклопедию. Однако насмешки Вольтера не уменьшили страсть Эйлера к философским дискуссиям. Однажды он в присутствии Екатерины II оскорбил Дени Дидро, обратившись к нему следующим образом: «Месье,

(а + b n)/n = x,

следовательно, Бог существует. Возразите!» Если верить этому сомнительному анекдоту, Дидро не стал вступать в спор и покинул зал. Эйлер работал в Берлинской академии и Академии наук в Санкт-Петербурге, он прожил счастливую семейную жизнь, окруженный своими тремя детьми. Седьмого сентября 1783 года, после обсуждения ежедневных забот, швейцарский гений «перестал считать и жить», как выразился Кондорсе. Его уравнение считается самым прекрасным в истории математики, поскольку оно объединяет ее фундаментальные числа: е iπ+1 = 0.

В дифференциальном уравнении главной неизвестной является скорость изменения величины, то есть его дифференциал, или производная. Дифференциалы как производные одной величины представляют изменение значения функции — увеличение, уменьшение, постоянство. Например, ускорение описывает изменение скорости движения, так как это частное дифференциалов скорости и времени. Иными словами, ускорение является производной скорости по отношению ко времени, и исходя из этого оно представляет собой изменение скорости по отношению ко времени.

Ньютон — одновременно с Готфридом Вильгельмом Лейбницем (1646-1716) — придумал дифференциальное исчисление (или теорию флюксий, как он его называл) и применил его к своим исчислениям. Итак, чтобы представить законы астрономии и механики в знаменитой работе Philosophiae naturalis principia mathematica {«Математические начала натуральной философии», 1687 год), Ньютон сохранил терминологию, унаследованную от Евклида и греков. Для расчета производной он определил касательные к кривой и вычислил интеграл (операция, обратная дифференцированию), чтобы определить площадь поверхности под кривой. Таким образом, если вы откроете «Начала» Ньютона, то, вероятно, будете разочарованы: это произведение, считающееся символическим по отношению к научной революции, практически не поддается расшифровке. В действительности именно Лейбницу мы обязаны символами, обозначающими слова «дифференцировать» (δ) и «интегрировать» (∫), а также правилами, регулирующими эту нотацию, хорошо известными каждому студенту математического факультета.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Карлос Касадо читать все книги автора по порядку

Карлос Касадо - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Вселенная работает как часы. Лаплас. Небесная механика. отзывы


Отзывы читателей о книге Вселенная работает как часы. Лаплас. Небесная механика., автор: Карлос Касадо. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img