Луи де Бройль - Революция в физике

Тут можно читать онлайн Луи де Бройль - Революция в физике - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Атомиздат, год 1965. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Революция в физике
  • Автор:
  • Жанр:
  • Издательство:
    Атомиздат
  • Год:
    1965
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Луи де Бройль - Революция в физике краткое содержание

Революция в физике - описание и краткое содержание, автор Луи де Бройль, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!

Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги. Это одна из немногих книг, где популярно и довольно полно излагается нерелятивистская квантовая теория, ставшая уже классической, но все еще не очень понятная и не очень знакомая тем. Кто непосредственно не занимается этой областью физики.

Это образец лучшего стиля популярной литературы, где автор никогда не впадает в дурной тон снисходительного отношения к читателю, которое выражается в том, что очень примитивно при помощи объяснений «на пальцах» и вульгарных «картинок» предположительно «малоразвитому» читателю пытаются объяснить некие высокие и недоступные материи. Напротив, это серьезная беседа о серьезных и трудных вещах, предполагающая у читателя способность к такому же точно интеллектуальному напряжению, которое приходится делать автору для того, чтобы трудные вопросы изложить по возможности ясно и доступно.

Революция в физике - читать онлайн бесплатно полную версию (весь текст целиком)

Революция в физике - читать книгу онлайн бесплатно, автор Луи де Бройль
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Сразу применив свой метод к самым классическим квантовым системам, Гейзенберг и его соратники вычислили квантованную энергию линейного осциллятора, атома водорода и т д. Часто их результаты оказывались в полном согласии со старой квантовой теорией, однако иногда совершенно от них отличались. Гак, например, в случаях линейного осциллятора, они получили вместо закона целых квантов, который предполагал Планк, закон полу целых квантов, о котором мы уже упоминали и который лучше согласуется с экспериментальными фактами.

Воодушевленные очень интересными результатами квантовой механики, строгостью и точностью ее формализма, толпы теоретиков бросились вслед Гейзенбергу, внося в его теорию все новые важные дополнения.

Шредингер опубликовал свою работу и с изумлением заметил, что метод квантования волновой механики ведет к тем же результатам, что и метод квантовой механики, хотя они различаются по духу. Он интуитивно почувствовал, что этот факт не случаен, и блестяще сумел объяснить его.

3. Тождество квантовой и волновой механики

В своей работе Шредингер руководствовался идеей, что с помощью волновой функции волновой механики можно построить величины, обладающие свойствами матриц квантовой механики. При этом квантовая механика оказывается методом, позволяющим вычислять эти величины и оперировать ими, не обращаясь явно к волновой функции. Таким образом, можно доказать идентичность этих двух форм новой механики.

Изучая проблему квантования в волновой механике, находят различные стационарные волны рассматриваемой системы и вычисляют соответствующие волновые функции. Эти функции называются собственными функциями системы: они образуют некую, как будем предполагать, дискретную последовательность. Во многих важных случаях это действительно так. Допустим теперь, что мы скомбинировали эти собственные функции во всевозможные пары. Получим, таким образом, два типа пар: пары, построенные из одинаковых собственных функций, и пары из различных собственных функций. Первые относятся к одному стационарному состоянию, вторые – к двум различным стационарным состояниям. Поэтому можно считать, что последние описывают переход между этими двумя стационарными состояниями.

Таким образом, из этих парных комбинаций волновых функций получим набор элементов, который можно поставить в однозначное соответствие с элементами гейзенберговской матрицы. Но поскольку, согласно Гейзенбергу, каждой физической величине отвечает своя матрица, то, следовательно, для каждой величины мы должны образовать разные комбинации собственных функций.

Следовательно, возникает существенно новая и важная идея. Она заключается в том, что каждой физической величине необходимо поставить в соответствие некий символ операции, определенный оператор. Для того чтобы, не задумываясь, написать уравнение распространения волны, связанной с частицей, Шредингер заменил компоненты импульса оператором, пропорциональным производным по сопряженным координатам, причем множитель пропорциональности содержал постоянную h .

Естественно также предположить, что каждой координате соответствует умножение на эту координату. Поскольку все механические величины. Характеризующие поведение частицы, можно выразить с помощью координат и компонент импульса (сопряженных импульсов Лагранжа), то только что сформулированные правила позволяют нам найти оператор, соответствующий любой механической характеристике частицы. Если образовать оператор энергии, то получим оператор Гамильтона, с которым мы встречались при построении волнового уравнения. Обобщая этот вывод, приходим к принципу, согласно которому всем физическим величинам сопоставляются операторы. Этот принцип положен в основу новой механики.

Теперь уже можно понять, как Шредингер построил матрицы, которые он хотел отождествить с матрицами квантовой механики. Пусть имеется некоторая механическая величина, характеризующая движение частицы и соответствующий ей оператор, правило построения которого мы знаем. Каждой паре собственных функций рассматриваемой системы можно, таким образом, сопоставить величину, образованную следующим образом. Оператор, о котором идет речь, действует на одну из функций пары, результат множится на комплексно сопряженное значение другой функции и интегрируется по всему пространству.

Повторяя подобную операцию со всеми парами собственных функций, получаем систему элементов, одни из которых относятся к одному стационарному состоянию, другие – к двум стационарным состояниям, т е. к переходам. Эти элементы располагают в таблицу, причем элементы первого типа помещают на диагонали (диагональные элементы). Каждой механической величине сопоставляется, таким образом, матрица. Вопрос теперь заключается лишь в том, можно ли отождествить эти матрицы и матрицы квантовой механики.

Ответ на этот вопрос утвердительный. Шредингер прежде всего показал, что матрицы, построенные только что описанным способом, должны удовлетворять, как и матрицы Гейзенберга, правилам сложения и перемножения алгебраических матриц. Кроме того, несколько странный путь, которым постоянная Планка проникла в квантовую механику, получил в концепции Шредингера немедленное объяснение. Произведение двух операторов, вообще говоря, не коммутирует: полученный результат зависит от порядка сомножителей.

Тем не менее во многих случаях два оператора, соответствующих механическим величинам, коммутируют. Однако имеется исключение, когда этими величинами являются координата и сопряженная компонента импульса, ибо оператор, отвечающий последнему, пропорционален производной по сопряженной координате, а операция «производная по некоторой переменной» не коммутирует, как легко видеть, с операцией умножение на эту переменную.

Отсюда немедленно следуют сформулированные Гейзенбергом правила перестановки. Чтобы завершить отождествление рассматриваемых матриц, остается лишь показать, что матрицы волновой механики подчиняются каноническим уравнениям квантовой механики. Вот как это было сделано: Шредингер показал, что из канонических уравнений строго следует, что волновые функции, использованные при конструировании матриц, обязательно удовлетворяют волновым уравнениям волновой механики. Короче говоря, канонические уравнения квантовой механики эквивалентны волновым уравнениям волновой механики.

Таким образом, оказалось, что обе формы новой механики сводятся одна к другой. Теперь больше не вызывает удивления тот факт, что они приводят в проблеме квантования к одинаковым результатам. Метод квантовой механики, оперирующий прямо с матрицами и не имеющий дела с промежуточными величинами – волновыми функциями, более компактен и часто быстрее приводит к желаемым результатам. Метод же волновой механики лучше удовлетворяет интуиции физиков и лучше согласуется с образом их мыслей. Поэтому на первый взгляд он кажется более естественным и удобным для работы. Действительно, большинство физиков пользуется волновым методом и при расчетах явно использует волновые функции.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Луи де Бройль читать все книги автора по порядку

Луи де Бройль - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Революция в физике отзывы


Отзывы читателей о книге Революция в физике, автор: Луи де Бройль. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x