Коллектив авторов - Молекулярная морфология. Методы флуоресцентной и конфокальной лазерной микроскопии
- Название:Молекулярная морфология. Методы флуоресцентной и конфокальной лазерной микроскопии
- Автор:
- Жанр:
- Издательство:Литагент СпецЛит
- Год:неизвестен
- ISBN:978-5-299-00642-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Молекулярная морфология. Методы флуоресцентной и конфокальной лазерной микроскопии краткое содержание
Настоящее руководство может являться справочным пособием для специалистов, применяющих в своей работе флуоресцентные методы и конфокальную микроскопию, а также будет полезно для студентов биологических и медицинских факультетов, изучающих морфологические и нейробиологические дисциплины.
Молекулярная морфология. Методы флуоресцентной и конфокальной лазерной микроскопии - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Молекулярная морфология. Методы флуоресцентной и конфокальной лазерной микроскопии
УСЛОВНЫЕ СОКРАЩЕНИЯ
АТ-пара – пара нуклеотидов аденин – тимин
АТФаза – аденозинтрифосфатаза
ГАМК – гамма-аминомасляная кислота
ГДК – глутаматдекарбоксилаза
ГЦ-пара – пара нуклеотидов гуанин – цитозин
дцДНК – двухцепочечная
ДНК ММ – молекулярная масса
НК – нуклеиновые кислоты
оцДНК – одноцепочечная
ДНК ПЦР – полимеразная цепная реакция
РНК – рибонуклеиновая кислота
СФ – синаптофизин
ФСБ – фосфатно-солевой буфер
ФЭУ – фотоэлектронный умножитель
ЦПМ – цитоплазматическая мембрана
ЭПР – эндоплазматический ретикулум
ЭФР – эпидермальный фактор роста
5-TAMRA – 5-carboxytetramethylrhodamine
CCD-матрица (ПЗС-матрица) – charge-coupled device (прибор с зарядовой связью)
DABCO – диазобициклооктан
DAPI – 4,6-диамидино-2-фенилиндол
DMD – digital micromirror device (цифровые микрозеркальные устройства)
EB – этидия бромид
FITC – флуоресцеинизотиоцианат
FLAP – Fluorescence Localization After Photobleaching (локализация флуоресценции после фотоотбеливания)
FLIM – fluorescence lifetime imaging microscopy (микроскопия для исследования времени жизни флуоресценции)
FLIP – Fluorescence Lossin Photobleaching (потеря флуоресценции во время фотоотбеливания)
FRAP – Fluorescence Recovery After Photobleachin (восстановление флуоресценции после фотоотбеливания)
FRET – Fдrster (Fluorescence) Resonance Energy Transfer (Фёрстеровская (флуоресцентная) резонансная передача энергии)
GPDH – глицерофосфатдегидрогеназа
LDH – лактатдегидрогеназа
PBFI – potassium-binding benzofuran isophtalate
PPI – пропидия йодид
PPDA – парафенилендиамин
RITC – родаминизотиоцианат
SBFI – sodium-binding benzofuran isophtalate
SDS – додецилсульфат натрия
SHIM – Second-harmonic imaging microscopy (микроскопия с использованием регистрации второй гармоники)
SNAP25 – Sy Naptosomal-Associated Protein, 25 kD
SNARE – Soluble N-ethylmaleimide-sensitive factor Attachment protein Receptor
TRITC – тетраметилродамин-5(6) – изотиоцианат
ПРЕДИСЛОВИЕ
В последние годы благодаря достижениям квантовой физики, молекулярной биологии и иммуноцитохимии, классические морфологические дисциплины приобрели совершенный инструмент для молекулярного анализа клеточных и тканевых структур. Сейчас можно констатировать, что на основе всестороннего использования новых молекулярных подходов происходит выделение передового направления в морфологии – молекулярной морфологии. Молекулярная морфология, аккумулируя знания, накопленные классической гистологией, эмбриологией, и патологической анатомией, способна занять ключевое место в интеграции клеточной биологии, биохимии, физиологии, молекулярной генетики и протеомики при решении фундаментальных проблем и прикладных задач биомедицинских исследований. Молекулярная морфология, используя постоянно расширяющиеся возможности новых методов конфокальной микроскопии, а также оптической микроскопии сверхвысокого разрешения, в скором времени должна решить насущную задачу создания нового поколения методов трехмерного молекулярного анализа клеточных и тканевых структур, пригодных для использования не только в практике научного исследования, но и в диагностических целях. Ожидаемые новые методы должны быть просты, надежны в использовании, высокоселективны и высокочувствительны. Успешное решение поставленной задачи требует от исследователя глубоких знаний о современных методических приемах иммуноцитохимии, флуоресцентной и конфокальной лазерной микроскопии. Одной из важных задач, стоящих перед морфологом, занимающимся научными исследованиями, является участие в комплексных исследовательских программах, объединяющих специалистов разного профиля с целью решения конкретной научной проблемы. Квалифицированному специалисту-морфологу для успешного выполнения задач комплексных междисциплинарных исследований уже недостаточно владения только основами общей, частной морфологии и патологии, но требуется также и понимание главных биофизических принципов, лежащих в основе феноменов, используемых при создании приборов, предназначенных для флуоресцентной и конфокальной лазерной микроскопии. Без этого невозможно разобраться в сложных настройках современных приборов, от правильного использования которых зависит окончательный результат кропотливой подготовительной работы. Облегчить специалистам-морфологам и научным работникам смежных специальностей знакомство с новыми методами микроскопии и показать, как можно с их помощью решать различные задачи, связанные с изучением структур клеток и тканей, должна помочь настоящая книга.
Технической базой для реализации представленных в приложениях протоколов и иллюстраций, помещенных на вклейках, послужил комплекс оборудования и программного обеспечения, разработанный фирмой Zeiss (Германия), который включает конфокальные лазерные микроскопы LSM 710 и LSM 510 Meta. Иммуноцитохимические протоколы и общие принципы работы с конфокальным микроскопом универсальны и могут успешно использоваться с оборудованием любых производителей.
Настоящее руководство аккумулирует многолетний опыт сотрудников лаборатории функциональной морфологии центральной и периферической нервной системы отдела общей и частной морфологии Института экспериментальной медицины, связанный с использованием методов конфокальной лазерной микроскопии и иммуноцитохимии.
Научные исследования, результаты которых использованы при написании этой книги, были выполнены при поддержке Российского научного фонда (проект № 14-15-00014).
Д. Э. КоржевскийГлава 1.
ФЛУОРЕСЦЕНТНАЯ МИКРОСКОПИЯ И КОНФОКАЛЬНАЯ ЛАЗЕРНАЯ МИКРОСКОПИЯ – ПРИНЦИПЫ И ОСНОВНЫЕ МЕТОДЫ
Большинство биологических объектов обладают низким контрастом внутренних структур, которые в основном прозрачны, поэтому возможности их наблюдения методом классической микроскопии светлого поля ограничены. Эта проблема может быть преодолена несколькими путями: применением метода исследования в темном поле, использованием метода фазового контраста, для двулучепреломляющих материалов применяют поляризационный контраст. Основным же методом контрастирования в биологии является окрашивание препаратов веществами, способными связываться с препаратом и поглощать свет или флуоресцировать. Последние называют флуорохромами.
1.1. Основные понятия
Флуорохромы (флуоресцентные красители) 1 1 В русскоязычной литературе понятия «флуорофор» и «флуорохром» обычно не различают, однако иногда под термином «флуорохром» подразумевают собственно флуоресцирующую молекулу, а под «флуорофором» – конъюгат флуорохрома с макромолекулой либо флуоресцирующий компонент сложной макромолекулярной структуры.10
Интервал:
Закладка: