Анатолий Ахутин - Поворотные времена. Часть 2
- Название:Поворотные времена. Часть 2
- Автор:
- Жанр:
- Издательство:Литагент Директмедиа
- Год:2014
- Город:М.: Берлин
- ISBN:978-5-4458-3822-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Анатолий Ахутин - Поворотные времена. Часть 2 краткое содержание
Поворотные времена. Часть 2 - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Основной критерий замкнутости теоретической системы Гейзенберг видит не в связности математической структуры, всегда достаточно сложной, и, разумеется, не в эмпирической общности, всегда достаточно проблематичной, а в том, что он называет компактностью теории, т. е. в систематическом единстве понятий, образующих ее логику и онтологию. «Компактность замкнутой теории, – пишет он, – относится больше к логическому и понятийному, чем к формально математическому аспекту. Недаром в истории возникновения замкнутых теорий прояснение физического смысла понятий, как правило, предшествовало полному пониманию математической структуры» 161. В основе любой замкнутой теоретической системы лежат некие развертываемые в ней фундаментальные понятия. Так, понятия точечных масс и действующих между ними сил лежат в основе ньютоновской механики. Они развертываются в системе кинематических и динамических понятий этой теории (координаты, скорость, импульс, ускорение, момент, кинетическая и потенциальная энергия и т. д.). В основе статистической физики лежит понятие канонического распределения и ансамбля, изображаемого точкой в фазовом пространстве. С помощью них интерпретируются специфические понятия термодинамики: теплота, температура, энтропия, свободная энергия и т. п. В основе электродинамики лежит понятие поля, подлинную универсальность которого впервые показал, как увидим, Эйнштейн. В основе квантовой механики лежит понятие состояния системы, описываемое функцией вероятности.
Каждое из этих фундаментальных понятий не может быть «дедуцировано» в системе прежних понятий. Оно формируется в попытках теоретически истолковать особый круг физических явлений и осмыслить тот математический формализм, который может быть уже создан для описания этих явлений, как было, например, с уравнениями Максвелла или матричной формулировкой квантовой механики.
В развертывании теоретической системы существует также своеобразный внешний симптом приближения к внутреннему пределу. Обнаруживается некая неуступчивая группа явлений. Пусть даже отдельный факт, упрямый факт, факт, в котором кроется новая система понимания. Требуется формирование новых идеализаций, новых моделей, схематизирующих эксперимент, новых понятий со своей логикой (типом связей) и онтологией (картиной мира). Требуется как бы заново начать работу понимания, а в контексте прежней – универсальной – системы это в особенности трудно.
Явления электромагнетизма или атомные спектры кажутся поначалу очередными открытиями в непрерывной работе экспериментаторов. Казалось бы, и работа теоретика состоит в соответствующем непрерывном совершенствовании своих теорий. Теперь мы можем заметить, что это далеко не так.
Дело в том, что фундаментальные физические теории строятся не просто как «описание» определенной совокупности фактов, скажем механических, или оптических, или электрических. Теория прежде всего устремлена к выяснению фундаментальных же, т. е. всеобщих, структур и законов природы как таковой.
Ньютон не создавал теорию особых механических явлений (даже неясно, что это такое). Он разрабатывал математическую механику как «Начала натуральной философии», как теорию всех возможных явлений. В XVIII в., как известно, ньютоновская механика представлялась именно универсальной системой естественнонаучного мышления. Она стала буквально мировоззрением – и не в силу своих внешних успехов или популяризации, а потому, что в ней были воплощены одновременно и идея полноты, точности и осмысленности теоретического знания вообще, и некая идеальная картина мира, идея реальности. Даже в XIX в., замечает Гейзенберг, «механика прямо отождествлялась с точным естествознанием. Ее задачи и сфера ее применимости казались безграничными». 162
Итак, вдумываясь в концепцию замкнутой теоретической системы, мы, пожалуй, вправе установить еще один ее критерий: понятия, образующие основание ее систематизма, непосредственно связаны с определенной идеей реальности. Она обладает универсальной значимостью, поскольку представляет собой некий универсум, идеальный мир, в контексте которого познается мир реальный. Вот почему переход к другой теоретической системе, необходимость которого поначалу связана с попыткой осмыслить особый круг явлений, как бы частный случай, оказывается столь трудным делом. В действительности речь идет здесь об изменении идеи реальности и способа ее теоретического представления, а это значит – о глубинном преобразовании теоретического мышления. Уникальные в истории науки ситуации, когда оказывается необходимым изменить саму структуру мышления, Гейзенберг трактует как научные революции. Он подчеркивает, однако, что необходимость такого изменения носит сугубо внутренний характер. К этому вынуждают не внешние – психологические или социальные – обстоятельства, а сама логика научного познания. «Революция, – говорит он, – производится исследователем, пытающимся решить некую частную проблему и при этом стремящимся вносить как можно меньше изменений в предшествующую науку. Именно это желание вносить как можно меньше изменений обнаруживает, что введение новшества вынуждено самим предметом (Sachzwang), что изменить структуру мышления о явлениях требует сама природа, а не какой-нибудь человеческий авторитет» 163.
Посмотрим теперь, соответствуют ли такому пониманию перечисленные Гейзенбергом системы. В самом ли деле образуют они подобные замкнутые миры? Могут ли они претендовать на универсальное теоретическое представление реальности?
Гейзенберг не распространяется о статистической физике. He стану и я входить здесь в обсуждение этого вопроса. Что же касается теории поля, утвердительный ответ вполне возможен. Тот человек, который впервые сделал понятие поля универсальным и связал его с новой идеей реальности, – Эйнштейн не раз, в частности в «Эволюции физики», написанной совместно с Л. Инфельдом, именно с этой точки зрения описывал историю возникновения теории относительности.
Понятие поля сформировалось, как известно, в экспериментах М. Фарадея. Уравнения Максвелла показали его теоретическую самостоятельность, которая окончательно утвердилась благодаря работам Герца и Лоренца. Когда Эйнштейн заменил классические преобразования Галилея преобразованиями Лоренца, он показал его (поля) подлинную всеобщность. Специальная теория относительности не уточнила, не усовершенствовала, а полностью преобразовала всю систему теоретической механики на новой основе. «Хотя теория, – замечают авторы „Эволюции физики”, – возникла из проблемы поля, она должна охватить все физические законы… Законы поля, с одной стороны, и законы механики – с другой, имеют совершенно различный характер. Уравнения электромагнитного поля инвариантны по отношению к преобразованиям Лоренца, а уравнения механики инвариантны по отношению к классическим галилеевским преобразованиям. Ho теория относительности требует, чтобы все законы природы были инвариантны по отношению к Лоренцовым, а не классическим преобразованиям». 164«Механистическое мировоззрение, – заключают они, – потерпело крах. В уравнениях Максвелла мы создали новый образ для законов природы» 165. Специальную теорию относительности можно поэтому считать как бы новыми «Началами натуральной философии».
Читать дальшеИнтервал:
Закладка: